March 1981

This document describes the elements of the Pascal language supported by
VAX-11 PASCAL. It is intended as a reference manual for use in preparing
VAX-11 PASCAL source programs.

VAX-11 PASCAL

Language Reference Manual
Order No. AA-H484B-TE

SUPERSESSION/UPDATE INFORMATION: This revised document supersedes the
VAX-11 PASCAL Language Reference
Manual (Order No. AA-H484A-TE)

SOFTWARE VERSION: VAX-11 PASCAL V1.2

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusett «

First Printir; November 1979
Rev ' ed, March 1981

The information in this document is subject to change thout notice
and should not be construed as a commitment by LCit tal Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license

and may be used or copied only in accordance with the tems of such
license.

No responsibility is assumed for the use or reliability of :>ftware on
equipment that is not supplied by DIGITAL or its affiliated (ompanies.

Copyright (:) 1979, 1981 by Digital Equipment Corporatisn.
All Rights Reserved.

The postage prepaid READER'S COMMENTS form on the last page f this
document requests the user's critical evaluation to assi:t us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DECSystem—lO PDT
DECUS DECSYSTEM-20 RSTS
DIGITAL DECwriter RSX

PDP DIBOL
UNIBUS Edusystem

VMS
vT
s lilgliltlall
DECnet MASSBUS

ZKA23-€1

CONTENTS

Page
PREFACE vii
SUMMARY OF TECHNICAL CHANGES x1i
CHAPTER 1 INTRODUCTION 1-1

STRUCTURE OF A PASCAL PROGRAM
The Program Heading
The Declaration Section
The Executable Section
CHARACTER SET
STATEMENTS

“ e e
« v .
w N

| I I |

.

. 3.1 Reserved Words -
2 Identifiers

.3.2.1 Predeclared Identifiers -

.3.2.2 User Identifiers -

.3.3 Special Symbols -

DELIMITERS
DOCUMENTING YOUR PROGRAM
THE $INCLUDE DIRECTIVE

[e I e I e e T el e T vy)
.

AU B WWWWWWN e
.

bt b b e b b b b b b b s
[}
COTARAN DD WWWW

CHAPTER 2 PASCAL CONCEPTS 2-1
2.1 NUMBERS 2-1
2.1.1 Integers 2-1
2.1.2 Real Numbers 2-2
2.2 CONSTANTS 2-3
2.3 VARIABLES 2-4
2.4 TYPES 2-4
2.4.1 Scalar Types 2-5
2.4.1.1 Predefined Scalar Types 2-5
2.4.1.2 User-Defined Scalar Types 2-5
2.4.1.3 The ORD () Function 2-6
2.4.2 Structured Types 2-6
2.4,2.1 Arrays 2-7
2.4.2.2 Records 2-7
2.4.2.3 Files 2-8
2.4.2.4 Sets 2-9
2.4.3 Pointer: Types 2-9
2.4.4 Type Compatibility 2-10
2.5 EXPRESSIONS 2-11
2.5.1 Arithmetic Expressions 2-11
2.5.2 Relational Expressions 2-13
2.5.3 Logical Expressions 2-14
2.5.4 Set Expressions 2-14
2.5.5 Precedence of Operators 2-15
2.6 SCOPE OF IDENTIFIERS 2-16

CHAPTER 3 THE PROGRAM HEADING AND THE

DECLARATION SECTION 3-1
3.1 THE PROGRAM HEADING 3-1
3.2 LABEL DECLARATIONS 3-2

iii

CONTENTS

CONSTANT DEFINITIONS 3
TYPE DEFINITIONS 3
VARIABLE DECLARATIONS 3-
VALUE INITIALIZATIONS 3

wwww
v e e 0
(o) I I~ SR UV]

s

CHAPTER DATA TYPES 4-1
PREDEFINED SCALAR TYPES
ENUMERATED TYPES
SUBRANGE TYPES
ARRAY TYPES
Multidimensional Arrays
String Variables
Initializing Arrays
Array Type Compatibility
Array Examples
RECORD TYPES
Records with Variables
Initializing Records
Record Type Compatibility
Record Examples
SET TYPES
FILE TYPES
Internal and External Files
Text Files 4-20
POINTER TYPES 4-21
PACKED STRUCTURED TYPES 4-23

1
H PO 0TDWN

YU b N+ O

. .

.

.
.

.
.

.
g W N

!

.
« o
W N R

[S S I S S N SRS N SN N SN S S S
!

.« o s
* e
N
|
N
[=Ne RN

.

B O I T S e S S T S Y L SN~ Watay
.
WO IJ~JOAUTUTUTC U S DDDDW N

w
|
—

CHAPTER PASCAL STATEMENTS

w

THE COMPOUND STATEMENT
THE ASSIGNMENT STATEMENT
CONDITIONAL STATEMENTS
The CASE Statement
The IF-THEN Statement
The IF-THEN-ELSE Statement
REPETITIVE STATEMENTS
The FOR Statement
The REPEAT Statement
The WHILE Statement
THE WITH STATEMENT
THE GOTO STATEMENT
THE PROCEDURE CALL 5-14

.

.

.
.

« .
« o
w N =

|
= = 00 00 Oy UT & BN

—

.
.
w N
|
(@]

|
[
N

ooyt uon
|

|
—
w

cuuUuoootuuunnutonn oo
.
NOUTE S DLB DWW WWN

CHAPTER PROCEDURES AND FUNCTIONS 6-1

o))

PREDECLARED SUBPROGRAMS 6-1
Predeclared Procedures) 6-1
Dynamic Allocation Procedures 6-5

Miscellaneous Predeclared Procedures 6-8

6-1
6-1
6-1

.
N
.
(S

Predeclared Functions
FORMAT OF A SUBPROGRAM
PARAMETERS

Format of the Formal Parameter List 6-15

Value Parameters 6-16

VAR Parameters - 6-16

Formal Procedure and Function Parameters 6-17

Dynamic Array Parameters 6-18

« o ¢ e o
« e o

N b b
. e o
[RENY

WWWWWWN

[o)) le)Ne) o) We) We) We)Ne) We) We) We)

iv

CHAPTER

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

[o) W) o) le)Ne)l
« o o o

(oo IR o) WU, I N

~

NN NNNONNa

e e e * o e o o

b b b et b
© e e o o o

U WN —

.« o

W N

.

~N
.

=
.

(G,
L] .
(G,

wm
.

(o)}

. . .
BWWWWWWWwWWwMNNNDNDND -
.

W

* o o o

e o o o o o

annuiund WwWN K+
o e
N

NN NNNGUONN NN

w

o w

EEmm m @] (@]
[\

* o o o

W N -

CONTENTS

DECLARING A PROCEDURE

DECLARING A FUNCTION

FORWARD DECLARATIONS

EXTERNAL SUBPROGRAMS

MODULES FOR SEPARATE COMPILATION

INPUT AND OUTPUT

GENERAL PROCEDURES AND FUNCTIONS
The CLOSE Procedure
The EOF() Function
The EOLN() Function
The FIND Procedure
The OPEN Procedure
History -- NEW or OLD
Record Length

Record Access Method -- SEQUENTIAL

or DIRECT

Record Type -- FIXED or VARIABLE
Carriage Control -- LIST, CARRIAGE,

FORTRAN, or NOCARRIAGE NONE
Examples
INPUT PROCEDURES
The GET Procedure
The READ Procedure
The READLN Procedure
The RESET Procedure
OUTPUT PROCEDURES
The LINELIMIT Procedure
The PAGE Procedure
The PUT Procedure
The REWRITE Procedure
The WRITE Procedure

Printing Hexadecimal Values Using WRITE
Printing Octal Values Using WRITE

The WRITELN Procedure
TERMINAL I/0

ASCII CHARACTER SET
SYNTAX SUMMARY

BACKUS-NAUR FORM
SYNTAX DIAGRAMS

SUMMARY OF VAX-11 PASCAL EXTENSIONS

SPECIFYING COMPILE-TIME QUALIFIERS IN

THE SOURCE CODE

PROGRAM EXAMPLES

TABLE SAMPLE
TEXTCHECK
POLYNOMIALS
COUNTWORDS

Page

6-20
6-23
6-26
6-27
6-28

~
|
—

NNNO0Ng
i
U WN N

~N
|
o

CONTENTS

Page
APPENDIX F VERSION 1.0 OPEN PROCEDURE F-1
F.1 THE OPEN PROCEDURE F-1
F.1.1 Buffer Size F-3
F.1l.2 File Status -- NEW or OLD F-3
F.1.3 Record Access Mode —-- SEQUENTIAL or DIRECT F-3
F.l.4 Record Type —-- FIXED or VARIABLE F-3
F.1.5 Carriage Control -- LIST, CARRIAGE,
or NOCARRIAGE F-3
F.1.6 Examples F-4
F.2 DIFFERENCES IN OPEN SYNTAX F-4
INDEX Index-1
FIGURES
FIGURE 1-1 Structure of a PASCAL Program 1-2
2-1 File Buffer Contents When Using READ
and RESET 2-9
2-2 Scope of Identifiers 2-17
4-1 Two-Dimensional Array 4-6
4-2 Three-Dimensional Array 4-6
4-3 Storing Elements in an Array 4-7
4-4 Initial Values of 2-Dimensional Array 4-9
4-5 File Buffer Contents 4-19
61 Sample Subprogram 6-14
7-1 file Position after GET 7-11
72 Fite Position after RESET 7-17
TABLES
TABLE - Reserved Words -

Predeclared Identifiers
Special Symbols

Arithmetic Operators

Result Types for Arithmetic Expressions
Relational Operators
Logical Operators

Set Operators

Precedence of Operators
Predeclared Procedures
Predeclared Functions
Default Values for VAX/VMS
File Specifications

Summary of File Attributes
Default Values for Field Width
Carriage Control Characters
ASCII Character Set

BNF Meta-Symbols

Language Extensions
Compile-Time Qualifiers
Default Values for VAX/VMS
File Specifications

Summary of File Attributes

UL D W

-

LA NN NN
]
NS WNHWN -
AN NN N R
I
[S R TR XL RS

[

|

DOW» IS99
[
== DN O

<N

!
o DS W N

? TlOcd?Jy~q\Jq
[

Lo B]

UL

NN

vi

PREFACE

MANUAL OBJECTIVES

This manual describes the VAX-11 PASCAL language. The manual is
designed primarily for reference; it is not a tutorial document. For
information about tutorial and user documents, refer to the list below
under "Associated Documents."

INTENDED AUDIENCE

This manual is intended for readers who know the PASCAL language. The
reader need not have a detailed understanding of the VAX/VMS operating
system, but some familiarity with VAX/VMS is helpful. For information
about VAX/VMS, refer to the documents listed below under "Associated
Documents." : ' : o

STRUCTURE OF THIS SOCUMENT
This manual contain: seven chapters and six appendixes.

e Chapter 1 describes the format of a PASCAL program, showing
its structure and elements.

e Chapter 2 introduces basic concepts 1including constants,
variables, data types, expressions, and scope of identifiers.

e Chapter 3 describes the program heading and declaration
section.

e Chapter 4 provides detailed information on PASCAL data types.

e Chapter 5 describes the statements that perform the actions of
a program.

e Chapter 6 explains the use of functions and procedures, and
summarizes the predeclared functions and procedures supplied
with VAX-11 PASCAL. .

e Chapter 7 provides detailed information on input and output
procedures,

e Appendix A lists the ASCII character set.

e Appendix B presents the VAX-11 PASCAL language in the
Backus-Naur form and includes syntax diagrams.

e Appendix C summarizes the extensions incorporated in VAX-11
PASCAL.

vii

e Appendix D describes how to specify compiler qualifiers in the
source code.

e Appendix E contains complete PASCAL program examples.

e Appendix F describes the Version 1.0 OPEN procedure and the
dAifference between it and Version 1.2.

ASSOCIATED DOCUMENTS

isers at all levels should refer to the VAX-11 PASCAL User's Guide for
information on compiling, 1linking, running, and debugging their
pregrams.

tor programmers unfamiliar with the PASCAL language, the VAX-11 PASCAL
Primer provides a tutorial introduction.

The VAX/VMS Primer provides introductory material for programmers
unfamiliar with the VAX/VMS operating system.

The VAX/VMS Command Language User's Guide describes the VAX/VMS
commands and will help all users in creating, editing, copying, and
printing files containing PASCAL programs.

The VAX-11 Information Directory and Index briefly describes all
system documentation, defining the intended audience for each manual
and providing a synopsis of each manual's contents.

CONVENTIONS USED IN THIS DOCUMENT

Tr.is document uses the following conventions.

Convention . Meaning
f } Braces enclose lists from which vyou must
| choose one item, for example:

expr
statement

N A horizontal ellipsis means that the
preceding item can be repeated as indicated,
for example:

filename, ...
A vertical ellipsis means that not all of the

statements in a figure or example are shown.

L Double brackets in the statement format
descriptions enclose items that are optional,
for example:

([PACKED]

Double brackets in statement and declaration
format description enclose items that are
optional, for example:

WRITE ([OUTPUT,]] print list)

viii

Convention

(.

items in uppercase
letters and special
symbols

items in lowercase
letters

Meaning

Square brackets mean that the statement
syntax requires the square bracket
characters. This notation 1is used with
arrays and sets, for example:

ARRAY [subscriptl]

Uppercase letters and special symbols in
format descriptions indicate PASCAL reserved
words that you must not abbreviate, for
example:

BEGIN
END

Lowercase letters represent elements that you

must replace according to the description in
the text.

ix

SUMMARY OF TECHNICAL CHANGES

This section summarizes the technical changes in the use of the VAX-11
PASCAL language for Version 1.2,

The OPEN procedure now allows the use of a string variable for the
file name and for nonpositional parameters.

The length of user-defined identifiers has been expanded from 15 to 31
characters.

xi

CHAPTER 1

INTRODUCTION

VAX-11 PASCAL is an extended implementation of the PASCAL language.
Developed for use under the VAX/VMS operating system, PASCAL includes
all the standard language elements plus the following extensions:

® Exponentiation operator

® Hexadecimal and octal integers

® Double-precision real data type

® Dollar sign ($) and underscore (_) characters inuidentifiers

® External procedure and function declarations 7

e CARD, CLOCK, EXPO, SNGL, and UNDEFINED functions

¢ UPPER and LOWER bound functions for arrays

® OTHERWISE clause in the CASE statement

® OPEN and CLOSE procedures for file access

e FIND procedure for direct access to sequential files

e Optional carriage control for output files

e DATE, TIME, HALT, and LINELIMIT procedures

® VALUE initialization section

® Dynamic array parameters

® Separate compilation

® 2INCLUDE directive for alternate input files durinq
compilation

® Extended parameter specifications to support the VAX-11
Procedure calling standard

1.1 STRUCTURE OF A PASCAL PROGRAM

A PASCAL program consists of a heading and a block. The heading
specifies the name of the program and the names of the external files
the program uses. The block is divided into two parts: the
declaration section, which contains data declarations, and the
executable section, which contains executable statements. Figure 1-1
points out each part of a sample PASCAL program.

1-1

FROGRAM

INTRODUCTION

Caleulator (INFUT+ OUTFUT)§ |Program Heading

TYFE Yes.No =
VAR Subtotals
Eaquation ¢
Orerator
Arswer ¢

(Yeey Nudy

Or-erand o
ROOLEANS
CHAKRS
Yes . Noé

ALY

FROCEDURE Instructionsy }WomdweH%dmg

REGIN
Declaration WRITELN (‘This srodram aidds subtractsy maltivl y and’)y
Section WRITELN (’‘divides real mrumbers, Enter a number o esronse’)
WRITELN (‘to the Orerand: eromet and enter a3rn oFc o hor)
Procedure / WRITELN (‘+y -y Xy /» Or = =< in resronse to the ratort’);
Block WRITELN (‘sromet, The rrodram heers 3 running subi o 317)7F
WRITELN (‘until sou enter an equal sidn (=) 1n res . se to’)
WRITELN (’the Orerator: cromet. You can then exit f:0n’)s
WRITELN ('the srodram Or hedgin 3 new set of calcula 1 ns.)
END; (kend of srocedure InstructionsX)
/" BEGIN
WRITE (‘Do wou need instructions? Ture wes OT Mos ')y
READLN (Answer)?
IF Answer=Yes THEN Instructionss
REFPEAT
Eaquation = FALSES
Subtotal = 0§
WRITE (’Orerandt)’
READLN (Subtotal);s
WHILE (NOT Eaquatiorn) DO
BREGIN
WRITE (‘Oreratori’Dy
READLN (Orerator)s
IF (Orerator = ’=7) THEN
BEGIN
Executable Equation = TRUES$
Section WRITELN(The answer 1% ‘ySubtotal)
END
ELSE BREGIN
WRITE ("Orerand?’)s
READLN (Orerand) i
CASE Orerator OF
/47 ¢ Subtotasl (= Subtotal + Orerands
/-7 ¢ Suhtotal = Subtotal - Orevand?
‘%’ ¢ Subtotal = Subhtotal % Orerand?
s /7 ¢ Subtotal = Subtotal / Orerand
END#
WRITELN ¢(‘The subtotal is ‘y Subtotal)
END
END s
WRITE (’Arny more calculations® Tyre wes OV nos s
READLN (Answer)y
UNTIL_Answer = No
\LENIt. 7K-026-80
Figure 1-1 Structure of a PASCAL Program

INTRODUCTION

Procedure and function declarations have the same structure as
programs. Note, in Figure 1-1, the heading and block of the procedure
INSTRUCTIONS. This manual uses the term "subprogram" to denote a
procedure or function.

1.1.1 The Program Heading
The program heading begins a PASCAL program and ccnsists of the word
PROGRAM followed by the program's name. After the name may be a list

of file identifiers, in parentheses. The file identifiers specify the
external files the program uses to read data and to record results.

1.1.2 The Deciaration Section

PASCAL requires the declaration of all data items in the program. To
declare a data item, you specify its identifier and indicate what it
represents. All declarations appear in the declaration section.

The declaration section contains the following declarations and
definitions, which must appear in the order listed:

1. Labels

2. Constants

3. Types

4., Variables

5. Value initializations

6. Procedures and functions

1.1.3 The Executable Section

The final part of a PASCAL program is the executable section and
contains the statements that specify the actions of the program.

The executable section is delimited by the reserved words BEGIN and
END. Between BEGIN and END are statements that read, write, and
change the values of data items, along with other statements that
control execution.

1.2 CHARACTER SET

VAX-11 PASCAL uses the full American Standard Code for Information
Interchange (ASCII) character set (see Appendix A). The ASCII

character set contains 128 characters in the following categories:
e The upper- and lowercase letters A through Z and a through z
e The numbers 0 through 9

e Special characters, such as ampersand (&), question mark (?),
and equal sign (=)

e Nonprinting characters, such as space, tab, 1line feed,
carriage return, and bell

1-3

INTRODUCTION

The VAX-11 PASCAL compiler does not distinguish between uppercasé and
lowercase characters except in character and string constants and the
values of character and string variables. For example, the reserved
word PROGRAM has the same meaning when written as any of the
following:

PROGRAM

PRogrAm

program
The constants below, however, represent different characters:

'bl

lB'
The following two constants represent different strings:

'BREAD AND ROSES'

'Bread and Roses'

1.3 STATEMENTS

The basic unit of a PASCAL Program is the statement, which directs the
system to perform a specified task.

Statements are composed of reserved words, 1identifiers, and special
symbols, combined with user-supplied values.

1.3.1 Reserved Words

VAX-11 PASCAL reserves the words in Table 1-1 as names for statements,
data types, and operators. This manual shows these words in uppercase
characters.

Table 1-1

Reserved Words
AND FILE MODULE SET
ARRAY FOR NOT $STDESCR
BEGIN FUNCTION OF THEN
CASE GOTO OR TO
CONST IF OTHERWISE TYPE
$DESCR $IMMED PACKED UNTIL
DIV IN PROCEDURE VALUE
DO $INCLUDE PROGRAM VAR
DOWNTO LABEL RECORD WHILE
ELSE MOD REPEAT WITH
END

You can use reserved words in your program only in the contexts in
which PASCAL defines them. You cannot redefine a reserved word for
use as an identifier.

1-4

INTRODUCTION

1.3.2 1Identifiers

PASCAL uses identifiers to name programs, modules, constants, types,
variables, procedures, and functions. An identifier is a sequence of
letters, digits, dollar signs ($), and underscores (), with the
following restrictions: -

e An identifier must start with a letter.

e An identifier must be unique in the first 31 characters within
the block in which it is declared.

e An identifier must not contain any blanks.

VAX-11 PASCAL places no restrictions on the length of identifiers, but
scans only the first 31 characters for uniqueness. The following are
examples of valid and invalid identifiers:

valid

FOR2NS8
MAX_WORDS

UPTO

LOGICAL NAME TABLE (unique in first
LOGICAL_NAME_ SCANNER 31 characters)
SYS$CREMBX

Invalid

4AWHILE (starts with a digit)

_BAR (starts with an underscore)

UP&TO (contains an ampersand)

YEAR END 80 MASTER FILE TOTAL DISCOUNT (not unique in first
YEAR_END_80_MASTER FILE TOTAL DOLLARS 31 characters)

Although VAX-11 PASCAL allows the dollar sign ($) in identifiers, this
character has a special meaning to the VAX/VMS operating system in
some contexts. You should restrict the use of the dollar sign ($) to
identifiers representing VAX/VMS symbolic names.

1.3.2.1 Predeclared Identifiers - vax-11 PASCAL reserves the
following predeclared identifiers in Table 1-2 as names of functions,
procedures, types, values, and files. These predeclared identifiers
appear in uppercase characters throughout this manual.

Table 1-2
Predeclared Identifiers
ABS EXP OoDD SIN
ARCTAN EXPO OPEN SINGLE
BOOLEAN FALSE ORD SNGL
CARD FIND OUTPUT SQR
CHAR GET PACK SQRT
CHR HALT PAGE succ
CLOCK INPUT PRED TEXT
CLOSE INTEGER PUT TIME
cos LINELIMIT READ TRUE
DATE LN READLN TRUNC
DISPOSE LOWER REAL UNDEFINED
DOUBLE MAXINT RESET UNPACK
EOF NEW REWRITE UPPER
EOLN NIL ROUND WRITE
WRITELN

INTRODUCTION

You can redefine a predeclared identifier to denote some other item.
Doing so, however, means that you can no longer use the identifier for
its usual purpose within the scope of the block in which it is
redefined (see Section 2.6 for a description of scope of identifiers).

For example, the predeclared identifier READ denotes the READ
procedure, which performs input operations. 1If you use the word READ
to denote something else, say a variable, you cannot use the READ
procedure. Because you could lose access to a wuseful language
feature, you should avoid redefining predeclared identifiers.

The directives FORTRAN, FORWARD, and EXTERN are also predeclared by
the PASCAL compiler. However, they retain their meanings as
directives even if you define them as identifiers.

1.3.2.2 User Identifiers - User identifiers denote program and module
names, constants, variables, procedures, functions, and user-defined
types. User 1identifiers represent significant data structures,
values, and actions that are not represented by a reserved word,
predeclared identifier, or special symbol.

1.3.3 Special Symbols

Special symbols represent delimiters, arithmetic, relational, and set
operators, and other syntax elements. VAX-11 PASCAL includes the
special symbols listed in Table 1-3.

Table 1-3
Special Symbols
Name Symbol Name Symbol
Addition + Less than or equal <=
Assignment operator 1= Left parenthesis (
Brackets . Multiplication *
Colon : Not equal <>
Comma ’ Percent %
Comments (* *) Period .
{ }

Division / Pointer -
Equal = Right bracket]
Exponentiation ** Right parenthesis)
Greater than > Semicolon ;
Greater than or equal >= Subrange operator .
Left bracket [Subtraction -
Less than <

1-6

INTRODUCTION

1.4 DELIMITERS

PASCAL uses two special symbols as delimiters: the semicolon (;) and
the period (.). The semicolon separates one PASCAL statement from the
next. One line of your program can contain one or many statements,
but the statements must be separated by semicolons. The period marks
the end of the PASCAL prcgram.

The semicolon and the period are the only characters that PASCAL
recognizes as delimiters. Spaces, tabs, and carriage-return/line-feed
combinations are separators and cannot appear within an identifier, a
number, or a special symbol. You must use at least one separator
between consecutive identifiers, reserved words, and numbers You
could, for instance, put each element of a PASCAL program on a
separate line:

PROGRAM
Simple
(
OUTPUT)

BEGIN

WRITELN (

'This is a very simple program.'
)

END.

You could also put the entire program on one line:
PROGRAM Simple(OUTPUT); BEGIN WRITELN('This is a very simple program.') END.

As long as each complete statement is separated from the next by a
semicolon, PASCAL interprets your input correctly. Spaces, tabs, and
carriage-return/line-feed combinations, however, make your program
easier to read and understand. Programming examples in this manual
are written with one statement on each line. For example:

PROGRAM Simple (OUTPUT);
BEGIN

WRITELN ('This is a very simple program.')
END.

The reserved words BEGIN and END are also used as delimiters. BEGIN
indicates the start of the executable section or a compound statement
(see Section 5.1), and need not be followed by a semicolon.
END indicates the end of one of the following:

e A record definition (see Section 4.5)

e An executable section

e A compound statement

e A CASE statement (see Section 5.3.1)
Although PASCAL does not require one, you can wuse a semicolon
immediately before END. A semicolon in this position results in an

empty statement between the semicolon and the reserved word END. The
empty statement implies no action and is generally harmless.

INTRODUCTION

1.5 DOCUMENTING YOUR PROGRAM

In addition to statements and delimiters, you can put comments in your
PASCAL program. Comments are simply words or phrases that describe
what happens in the program.

You can enclose comments in braces ({}), as follows:
{This is a comment.}

Alternatively, you can start a comment with the
left-parenthesis/asterisk character pair and end it with the
asterisk/right-parenthesis character pair, as follows:

(*This is a comment, too.¥*)

You can place a comment anywhere a space is legal. Unlike statements,
comments are not delimited by semicolons.

A comment can contain any ASCII character because PASCAL ignores the
text of the comment.

1.6 THE SINCLUDE DIRECTIVE

The $INCLUDE directive allows you to read statements from one PASCAL
file during compilation of another. The contents of the included file
are inserted at the point where the VAX-11 PASCAL compiler encounters
the S%INCLUDE directive. The $INCLUDE directive is described in this
chapter because it has no effect on program execution except to direct
the compiler to read PASCAL source from a second file. The $INCLUDE
directive can appear anywhere that a comment is 1legal. $INCLUDE is
useful when the same information is used by several programs.

Format

RINCLUDE 'VAX/VMS file-specification /JLIST
/NOLIST

VAX/VMS file-specification

Designates the file to be included (see the VAX-11 PASCAL User's
Guide for the form of the VAX/VMS file specification).
Apostrophes are required to enclose the VAX/VMS
file-specification and /LIST or /NOLIST option.

/LIST

Indicates the included file is to be printed in the listing.
LIST is the default.

/NOLIST
Indicates the included file is not printed in the listing.

When the compiler finds the %INCLUDE directive, it stops reading from
the current file and begins reading from the included file. When it
reaches the end of the included file, the compiler resumes compilation
immediately following the $INCLUDE directive.

An included file can contain any PASCAL declarations or statements.
However, the declarations in an included file, when combined with the
other declarations in the compilation, must follow the required order
of declarations.

1-8

INTRODUCTION

You can use the $INCLUDE directive in another included file: however,
recursive %INCLUDE directives are not allowed. If the file OUT.PAS
contains a $INCLUDE directive for the file IN.PAS then the file IN,PAS
must not contain the directive $INCLUDE for the file OUT.PAS.

In the following example, the $INCLUDE directive specifies the file
CONDEF.PAS, which contains constant definitions.

Main PASCAL Program CONDEF.PAS

PROGRAM Student Courses (INPUT, OUTPUT, Sched); Max_Class = 300;
N_Profs = 140;
CONST $INCLUDE 'CONDEF.PAS/LIST' Frosh = 3000;

TYPE Schedules = RECORD
Year : (Fr, So, Jr, Sr);
Name : PACKED ARRAY [l..30] OF CHAR;
Parents : PACKED ARRAY [1..40] OF CHAR;
College : (Arts, Engineering, Medicine, Math, Hotel)
END;

The $INCLUDE directive instructs the compiler to insert the contents
of the file CONDEF.PAS after the reserved word CONST in the main
program. The main program STUDENT COURSES is compiled as 1if it
contained the following: -

PROGRAM Student_Courses (INPUT, OUTPUT, Sched) ;.
CONST Max Class 300;

N Profs 140;
Frosh = 3000;

TYPE Schedules = RECORD
Year: (Fr, So, Jr, Sr);
Name: PACKED ARRAY [1..30]) OF CHAR;
Parents : PACKED ARRAY [1..40] OF CHAR;
College : (Arts, Engineering, Medicine, Math, Hotel)
END;

1-9

CHAPTER 2

PASCAL CONCEPTS

This chapter introduces general concepts of VAX-11 PASCAL, describing
the following aspects of PASCAL programming:

e Numbers

e Constants

e Variables

o Types

® Expressions

® Scope of identifiers

2.1 NUMBERS

VAX-11 PASCAL recognizes integers and real numbers. An integer is
entered in decimal, octal, or hexadecimal form. A real number can be
specified as single or double precision. The sections below describe
the format and acceptable range of values for integers and real
numbers.

2.1.1 1Integers

Integers are positive and negative whole numbers ranging from -2%%3]
to 2 ** 31 - 1, This range contains numbers from -2,147,483,648
through 2,147,483,647. The following are valid integers in PASCAL:

17
-333
0

+1
89324

A minus sign (-) must precede a negative integer. A plus sign (+) can
precede a positive integer, but is not required. No commas or decimal
points are allowed.

PASCAL CONCEPTS

In addition to decimal integers, VAX-11 PASCAL allows you to specify
integers in octal and hexadecimal notation. To specify an octal
integer, place a percent sign (%) and the letter O in front of the
octal number. The letter O can be uppercase or lowercase. For
example:

%07712
%06
%0473
%0150

To specify a hexadecimal integer, place a percent sign (%) anu the
letter X in front of the hexadecimal number. The letter X can be
uppercase or lowercase. For example:

$X53A1
$XDEC
$x99
$X2C1l2

You can use an octal or hexadecimal integer anywhere an integer |is
used.

2.1.2 Real Numbers

Real numbers are decimal numbers ranging from approximately
0.29*%(10**(-38)) to 1.7*%(10**38) for positive quantities and
-0.29%(10**(-38)) to -1.7*%(10**38) for negative quantities.

In a PASCAL program, real numbers are written in decimal notation or
scientific notation. The following numbers are in decimal notation:

2.4
893.2497
-0.01
8.0
-23.18
0.0

Note that in this form, at least one digit must appear on each side of
the decimal point. That is, a zero must always precede the decimal
point of a number between 1 and -1 and a zero must follow the decimal
point of a whole number quantity.

Some numbers are too large or too small to write conveniently 1in the
above format. PASCAL provides scientific (or exponential) notation as
a second way of writing real numbers. In scientific notation, the
numbers are a positive or negative value followed by an exponent. For
example:

2.3E2
-0.07e4
10.0E-1
-201E+3
-2.14159E0

PASCAL CONCEPTS

The letter E after the value means that the value is to be multiplied
by a power of 10. Note that you can use an uppercase or lowercase E.
The integer following the E tells which power of 10 and is positive or
negative. The real number 237.0 is written in any of the following
ways:

237e0

2.37E2
0.000237E+6
2370E-1
0.0000000237E10

This format is sometimes called floating-point format because the
position of the decimal point "floats" depending on the exponent
following the E. At least one digit must appear on each side of the
decimal point.

VAX-11 PASCAL provides single and double precision for real numbers.,
Single precision typically provides seven significant digits. Double
precision extends the number of significant digits to 16,
To indicate a double-precision real number, you must use
floating-point notation, replacing the letter E with an uppercase or
lowercase D. For example:
0DO
4.371528665D-3
-812d2
4D-3
The integer following the D is an exponent, as 1in single-precision

floating-point numbers. All the above values have approximately 16
significant digits.

2.2 CONSTANTS

A constant is a quantity with an unchanging value. The value can be
any of the following:

e An integer, such as 7, -2, +3001, %XDEFACE
e A real number, such as 3.1415927, -7.0, 0.63l1E+5, 19D-4
e A character, suph as 'A', '2!
e A string of characters, such as '"****%***x' 1oyt to lunch'
e One of the Boolean values: TRUE or FALSE
e A value of an enumerated type, such as BLUE, MONDAY
Numeric values must be specified as shown in Sections 2.1.1 and 2.1.2.

You can wuse decimal, octal, and hexadecimal integers and single- and
double-precision real numbers.

2-3

PASCAL CONCEPTS

You must enclose character and string constants in apostrophes, for
example:

Tt
'Blaise'
'Many minds are not sound.' (*Blaise Pascal¥)
'Thought constitutes man''s greatness' (*Blaise Pascal¥)
A character string can contain any ASCII character. To use the

apostrophe in a string, type it twice as in the fourth string above.
A string constant can occupy only one line.

Values of Boolean and enumerated types (see Section 2.4) can also be
used as constants. To specify one of these values, use its constant
identifier.

You can define an identifier to name a constant value, and then use
the identifier anywhere in the program in place of the value (see
Section 3.3). For example, if the identifier PI represents the value
3.1415927, you can simply specify PI whenever the value 3.1415927 is
needed. You cannot change a constant's value after you define it.

VAX-11 PASCAL includes the predefined constant identifier " MAXINT.
MAXINT represents 2,147,483,647, which is the largest integer value
you can use in a PASCAL program.

2.3 VARIABLES

A variable is a quantity whose value can change while the program
executes. In PASCAL, every variable has an identifier, a type, and a
value, and must be declared in the declaration section. The
identifier and type are permanent characteristics; you cannot change
them, except by changing the variable declaration.

A variable's type automatically establishes three other properties:
e The range of values the variable can assume
e The legal operations for the variable

e The predeclared procedures and functions that apply to the
variable

The type implicitly indicates how much storage space 1is required for
all the possible values the variable can assume. A variable can
change in value any number of times, but all its values must be within
the range established by its type.

A variable does not assume a value until assigned one by the program.
You can use an assignment statement or an input procedure to assign a
value to a variable at execution time. VAX-11 PASCAL also provides
the VALUE section (see Section 3.6), which allows you to initialize
variables in the declaration section.

2.4 TYPES

In PASCAL, data types are divided intoc three categories: scalar,
structured, and pointer types. The scalar types, introduced in
Section 2.4.1, are the fundamental types. They serve as building

2-4

PASCAL CONCEPTS

blocks for the structured types, introduced in Section 2.4.2. PASCAL
also includes a dynamic type called the pointer type, introduced in
Section 2.4.3. When you form an expression, assign a value to a
variable, or pass parameters to a subprogram, the types involved must
follow the rules for type compatibility. Section 2.4.4 introduces the
concept of type compatibility.

2.4.1 Scalar Types

A scalar type is an ordered group of values. For example, the scalar
type INTEGER. denotes the positive and negative whole numbers. The
integers follow a certain order, for example, -700 is less than 2.

PASCAL defines some scalar types and allows you to define others to
fit your needs. A user-defined scalar type can be defined by
enumerating each value or it can be defined as a subrange of another
scalar type. Values of user-defined scalar types, like those of
predefined scalar types, follow a particular order. The ORD function
(see Section 2.4.1.3) returns the ordinal value of a scalar data item.

.

2.4.1.1 Predefined Scalar Types - PASCAL defines the scalar types
INTEGER, REAL, CHAR, and BOOLEAN for integer, real number, character,
and Boolean values. Two additional predefined types, SINGLE and
DOUBLE, provide explicit single- and double-precision real numbers.
(Throughout this manual, the term "real types" refers to the REAL,
SINGLE, and DOUBLE types.) Sections 2.1.1 and 2.1.2 describe the range
of values for variables of the integer and real types.

A value of type CHAR is a single element of the ASCII character set,
as listed 1in Appendix A. To specify a character, enclose it in
apostrophes. To indicate the apostrophe character, type it twice
within apostrophes. Each of the following is a valid character value:

lAl
lzl
IOI
] 1]

'' (the apostrophe)
1

W) =

Variables of type CHAR are always single characters. You can use
strings such as 'HELLO' and '***', but they must be represented as
packed arrays of characters (see Section 2.4.2.1).

The BOOLEAN type has two values: TRUE and FALSE. PASCAL defines them
as predeclared identifiers and orders them so that FALSE is less than
TRUE. Boolean values are the result of testing expressions for truth
or validity. The result of a relational expression (for example, A<KB)
is a Boolean value.

2.4.1.2 User-Defined Scalar Types - PASCAL not only provides
predefined scalar types, but also allows you to define your own scalar
types. A user-defined scalar type can be an enumerated type or a
subrange of any scalar type except the real numbers.

2-5

PASCAL CONCEPTS

An enumerated type consists of an ordered list of identifiers. The
identifiers are the constant values of the type you are defining. For
example, you could define the enumerated type Weekdays with wvalues
Monday, Tuesday, Wednesday, Thursday, and Friday.

A subrange type consists of a continuous range of values of another
scalar type, called the base type. You can use a subrange anywhere
you can use its base type. The subrange symbol (..) 1is wused in
specifying a subrange, as follows:

1..30

This notation specifies a subrange containing the integers from 1 to
30, inclusive. You can also define subranges of character and
enumerated types. For example:

'A'..'Z'
Monday..Wednesday

The subrange in the first example above contains all the ASCII
characters from uppercase A to uppercase Z. Assuming you have defined
the type Weekdays as previously mentioned, the second example
specifies a subrange with the values Monday, Tuesday, and Wednesday.

2.4.1.3 The ORD () Function - Each element of a scalar type (except
the real types) has a unique ordinal value, which indicates its
position in a list of elements of its type. The ORD() function
returns the ordinal value as an integer. For example:

ORD('Q")

This expression returns 81, which is the ordinal value of uppercase Q
in the ASCII character set (see Appendix A). Note that the order of
the ASCII character set may not be what you expect. Although the
numeric characters are in numeric order and the alphabetic characters
are in alphabetic order, all uppercase characters have lower ordinal
values than all lowercase characters. For example:

ORD('0') is less than ORD('9') and
ORD('A') is less than ORD('Z'), but
ORD('Z') is less than ORD('a')

You can use ORD () on a value of an enumerated type, as follows:

ORD (Tuesday)
Assuming that Tuesday is a value of type Weekdays (which has constants
Monday, Tuesday, Wednesday, Thursday, and Friday), this expression

returns the integer 1. Enumerated types are ordered starting at 0.

The ordinal value of an integer is the integer itself. For example,
ORD(0) equals 0, ORD(23) equals 23, and ORD(-1984) equals -1984.

2.4.2 Structured Types

PASCAL has four structured types: arrays, records, files, and sets.
Using structured types, you can process groups of scalar, structured,
or pointer data items. For example, you can have an array of
integers, an array of arrays, a record of integers and characters, a
file of records, or a set of an enumerated type.

2-6

PASCAL CONCEPTS

PASCAL allows you to pack variables of structured types to save
storage space. Packed structures are stored as densely as possible.
The VAX-11 PASCAL User's Guide describes Storage allocation for packed
and unpacked variables.

2.4.2.1 Arrays - An array is a group of variables of the same type
that share an identifier. Each variable in the array is called an
element of that array, and is referred to with the array identifier
and one or more subscripts (or indexes). The subscripts need not be
integers; they can be values of any scalar type except a real type.

For example, you could declare an array variable Bat Avg, with
subscripts 1 to 9 and elements that specify the batting average for
each player in the starting line-up of a baseball team. To refer to
the elements of this array, you would specify Bat Avg[l], Bat Avg[2],
and so on up to Bat_Avg[9]. - -

Multidimensional Arrays

Arrays with more than one subscript are multidimensional arrays.
These are simply arrays of arrays. You can specify up to 255
dimensions and the subscripts need not be of the same type. For
example, you could create a 2-dimensional array of batting averages
indexed by the name of the team and an integer from 1 to 9. Given the
enumerated type League with team name values Stingers, Big Red,
Wolves, and Lizards, the references to this array would be the
following:

Bat Avg[Stingers,1] Bat Avg[Stingers,2] ... Bat_Avg[Stingers,9]
Bat_Avg[Big_Red,l] Bat_Avg[Big_Red,2] ... Bat Avg([Big Red, 9]
Bat Avg[Wolves,1] Bat Avg[Wolves, 2] ... Bat Avg[Wolves,9] -
Bat Avg([Lizards,1] Bat Avg[Lizards, 2] ... Bat_Avg[Lizards,9]

Each element of this array contains the batting average of the nth
Player in the starting line-up of the specified team.

Character String Variables

In PASCAL, a character string variable 1is a packed array of
characters, with integer subscripts starting at 1. The length of the
string is established by the range of the array's subscripts, and is
fixed. For example, if you define the variable NAME as a packed array
of 30 characters, it can take on any 30-character string constant as
its value.

2.4.2.2 Records - A record is a collection of related data items that
may be of different types. Records are composed of fields, which are
named by identifiers; each field contains a different data item. The
data items can be of any type. To refer to a particular field of the
record, you specify the record name and the field name, separated by a
dot.

PA{ ° L CONCEPTS

For example, you could define the ‘2cord type Flight as follows:
Field Contents

Flight = RECORD

Carrier : PACKED ARRAY [l1.. 1 OF CHAR; Name of airline
Flightno : PACKED ARRAY [l1.] OF CHAR; Integer flight number
Depart, Departure time

Arrive : PACKED ARRAY [1..6] (7 CHAR; Arrival time

Meals : CHAR; Y or N indicating

meal service
END;

To store all the information about a parti-ular flight from Boston to
Los Angeles, you might declare a variabl named Boston To_La of type
Flight. To refer to the fields of this 1:7ord, you would specify
Boston To La.Carrier, Boston To La.Flighu-:, Boston To La.Depart,
Boston To La.Arrive, and Boston To La.Meals. -

2.4.2.3 Files - A file is a sequence of data it=1s of the same type,
called components of the file. The number of cci ponents in a file is
not fixed; a file can be any length.

The components of a file can be any type except a sther file or a type
containing a file. For example, you can define a file of arrays, a
file of integers, a file of records, or a file of <n enumerated type.

PASCAL defines the identifier TEXT to denote files w! h components of
type CHAR. Text files are divided into lines so that you can read and

write them line-by-line or character-by-character. The predefined
files INPUT and OUTPUT are of type TEXT. These f. les refer to the
standard input and output files, normally your terminal (in

interactive mode) or the batch input and log file (in ba=-ch mode) .

You can read or write a file through the file buffer wvariable, which
is automatically created when vyou declare the file variable. The
buffer variable is denoted by the file identifier fo'lowed by a
circumflex. :

For example, you could define the file wvariable Travel, with
components of record type Flight, as described in Section 2.4.2.2
above. The buffer variable associated with this file would be denoted
as Travel”, of type Flight.

The buffer variable takes on the value of one file component at a
time. Predefined input procedures assign the value of a file
component to the buffer variable; predefined output procedures assign
the wvalue of the buffer variable to a file component (see Chapter 7
for further information). Figure 2-1 illustrates the file buffer
contents after a RESET procedure and after a read.

2-8

PASCAL CONCEPTS

file TRAVEL

PANAMS505530PM1130PMY

T
!
UNITED323830AM1100PMY | WESTERNE061200PM400PMY
|
1

— N N J
RECORD1 RECORD2 RECORD3
File buffer
File buffer bﬂf
undefined betore PANAMS505530PM1130PMY utter
RESET after
RESET
File File
butfer buffer
UNITED323830AM1100PMY WESTERNG061200PM400PMY
atter after
1st read 2nd read
ZK-027-80

Figure 2-1 File Buffer Contents When Using READ and RESET

2.4.2.4 Sets - A set is a collection of scalar data items. Each set
can have up to 256 elements with ordinal values from 0 to 255. The
elements of the set must be specified within square brackets and
separated by commas. For example, each of the following specifies a
set with three elemeq?s:

1o, 20, 30)
[Motorcycle, Bicycle, Unicycle]
[lal"bl'lcl]

The empty set, which has no elements, is written as empty square
brackets, [].

Because set elements must have ordinal values between 0 and 255, sets
cannot contain integers outside this range. For example, the set
[(5..21, 27] is legal but [200..256] is not. Real numbers cannot be
set elements.

2.4.3 Pointer Types

Normally, variables have the lifetime of the program or subprogram in
which they are declared. That is, they exist only during execution of
the declaring program or subprogram. Variables declared in the main
program (program-level variables) are allocated in static storage and
variables declared in a subprogram (subprogram-level variables) are
allocated in stack storage. However, for some variables these
lifetimes are inadequate. In addition, at times your program might
require an unknown number of wvariables of a certain type. PASCAL
allows you to use dynamic variables to meet these needs.

2-9

PASCAL CONCEPTS

A dynamic wvariable is dynamically allocated when needed in the
program. In contrast to other variables, dynamic variables are
allocated in an area called heap storage.

Dynamic variables are not named by identifiers. Instead, you refer to
them indirectly with pointers. Each pointer specifies the address of
a dynamic variable of any type, called the base type.

To indicate a pointer type, you specify the name of a base type,
preceded by a circumflex ("); for example "person. To indicate the
dynamic variable to which a pointer refers, you use the name of the
pointer variable followed by a circumflex; for example pt”~.

For example, dynamic variables of type Action can be referenced by
pointers of type "Action. If you declare the variables Ptr Actionl,
Ptr_ Action2, and Ptr Action3 of type “Action, you can uSe these
pointers to refer to one or more dynamic variables of type Action.
The value of each pointer wvariable 1is the address of a dynamic
variable of type Action.

Using pointers to structured types, you can create linked lists. The
NEW and DISPOSE procedures, described in Section 6.1.1.1, allocate and
deallocate space for dynamic variables.

2.4.4 Type Compatibility

Type compatibility rules determine the operations and assignments that
you can perform with data items of different types. This section
provides a brief introduction to the concept of type compatibility and
supplies some general rules. Specific rules are described with the
operations and assignments to which they apply.

Two scalar types are compatible if their type identifiers are declared
equivalent in the TYPE section (see Section 3.4). In addition, a
subrange type is compatible with its base type, and two subranges of
the same base type (or equivalent base types) are compatible.

For structured and pointer types, VAX-11 PASCAL enforces structural
compatibility. Two structured or pointer types are compatible if
their structures are identical. The way PASCAL determines structural
compatibility depends on the types 1involved. For instance, the
requirements for record compatibility differ from those for array
compatibility. Chapter 4 covers specific compatibility requirements
along with the description of each type.

PASCAL uses compatibility rules in the following three contexts:
® Expression compatibility
® Assignment compatibility
e Formal and actual parameter compatibility

Expression compatibility determines the types of operands you can use
in an expression, as described in Section 2.5.

Assignment compatibility determines the types of values you can assign
to variables of each type. Assignment compatibility rules apply to
value initializations, assignment statements, and wvalue parameters.
Assignment compatibility is described with the assignment statement
(Section 5.2).

PASCAL CONCEPTS

Formal and actual parameter compatibility determines the types of data
you can pass in a parameter list. Value parameters follow the rules
for assignment compatibility. VAR parameters follow somewhat
different rules, as noted in Section 6.3.1.2.

2.5 EXPRESSIONS
An expression is a symbol or group of symbols that PASCAL can
evaluate. These symbols can be constants, variables, or functions
(see Chapter 6), or any combination of constants, wvariables, and
functions, separated by operators. The simplest expression is a
single variable or constant.
PASCAL provides the following types of operators:

e Arithmetic operators (such as +, =, /)

e Relational operators (such as <, >, =)

® Logical operators (such as AND, OR, NOT)

® Set operators (such as +, -, *)

2.5.1 Arithmetic Expressions

An arithmetic expression usually provides a formula for calculating a
value. To construct an arithmetic expression, you combine numeric
constants, variables, and function identifiers with one or more of the
operators from Table 2-1.

Table 2-1
Arithmetic Operators
Operator Example Meaning
+ A+B Add A and B
- A-B Subtract B from A
* A*B Multiply A by B
* % A**B Raise A to the power of B
/ A/B Divide A by B
DIV A DIV B Divide A by B and truncate the result
MOD A MOD B Produce the remainder after dividing A by B

The addition, subtraction, moltiplication, and exponentiation (+, -,
*, and **) operators work on both irteger and real values. They
produce real results when applied to real values and integer results

PASCAL CONCEPTS

when applied to integer values. If the expression contains values of
both types, the result is a real number. The only exception to these
rules concerns exponentiation. VAX-11 PASCAL defines the results of
an integer raised to the power of a negative integer as follows:

Base Exponent Result
0 Negative or 0 Error
1 Negative 1
-1 Negative and odd -1
-1 Negative and even 1
Any other
integer Negative 0
For example, the expression 1**(-3) equals 1; -1**(-3) equals -1;

-1**(-4) equals 1; and 3**(-3) equals O.

The division (/) operator can be used on both real and integer values,
but always produces a real result. Use of the division (/) operator
can therefore cause errors in precision in expressions involving
integers.

The DIV and MOD operators apply to integer values only. DIV divides
one integer by another, producing an integer result. DIV truncates
the result, that is, it drops any fraction. It does not round the
result. For example, the expression 23 DIV 12 equals 1 and -5 DIV 3
equals -1.

MOD is the modulus operator, which returns the remainder after
dividing the first operand by the second. Thus, 5 MOD 3 evaluates to
2. Similarly, 3 MOD 3 evaluates to 0 and -4 MOD 3 evaluates to -1.

In arithmetic expressions, PASCAL allows you to mix integers, real
numbers (single and double precision), and integer subranges. When
you assign the value of an expression to a variable, you must ensure
that the types of the variable and the expression are compatible.
However, you cannot assign a real expression to an integer wvariable.
An integer expression can be assigned to a real variable or a
double-precision variable. Also a single-precision real expression
may be assigned to double-precision variable.

Table 2-2 lists the type of the result for all possible combinations
of arithmetic operators and operands.

PASCAL CONCEPTS

Table 2-2
Result Types for Arithmetic Expressions
Operator
First Second .
Multiply (%)
Operand | Operand Subtract (-) DIV Division | Exponentiation
Add (+) MOD (/) (**)
Integer | Integer Integer Integer | Integer Integer
Real Real Real Real
Double Double Double Double
Real Integer Real Real Real
Real Real Real Real
Double Double Double Double
Double Integer Dbuble Double Double
Real Double Double Double
Double Double Double Double

2.5.2 Relational Expressions

A relational expression or condition tests the relationship between
two arithmetic or 1logical expressions. A relational expression
consists of two scalar or string variables or arithmetic expressions
separated by one of the relational operators listed in Table 2-3.

Table 2-3
Relational Operators
Operator Example Meaning
= A =B A is equal to B
<> A <> B A is not equal to B
> A >B A is greates than B
>= A >= B A is greater than or equal to B
< A < B A gs less than B
<= A <= B A is less than or equal to B

Note that the two <characters in the not equal (<>), greater than or
equal (>=), and 1less than or equal (<=) operators must appear in the
specified order and cannot be separated by a space.

PASCAL produces a Boolean result when it evaluates a relational
expression. Every relational expression therefore evaluates to TRUE
or FALSE. For example, the condition 2 < 3 1is always TRUE; the
condition 2 > 3 is always FALSE.

PASCAL CONCEPTS

2.5.3 VLogical Expressions

Logical expressions test the truth value of combinations of
conditions. A logical expression consists of two or more expressions
that have Boolean results, separated by one of the logical operators
in Table 2-4.

Table 2-4
Logical Operators

Operator Example Result
AND A AND B TRUE if both A and B are TRUE
OR A OR B TRUE if either A or B is TRUE (or
if both are TRUE)
NOT NOT A TRUE if A is FALSE (and FALSE if A
is TRUE)

The AND and OR operators combine two conditions to form a compound
condition. The NOT operator reverses the truth value of a condition,
so that if A is TRUE, NOT A is FALSE and vice versa.

As with relational expressions, the result of a logical expression is
a Boolean value.

2.5.4 Set Expressions
You can use the operators in Table 2-5 with set variables, constants,

and expressions.

Table 2-5
Set Operators

Operator Example Meaning
+ A+B Union of sets A and B
* A*B Intersection of sets A and B
- A-B Set of those elements of A that are
not also in B
= A=B Set A is equal to set B
<> A<>B Set A is not equal to set B
<= A<=B Set A is a subset of set B
>= A>=B Set B is a subset of set A
IN A IN B A is an element of set B

PASCAL CONCEPTS

The set operators (+, *, -, =, <>, <=, and >=) require both operands
to be set values. The IN operator, however, requires a set expression
as its second operand and a scalar expression of the associated base
type as its first operand. For example:

2 * 3 IN [1..10]

The value of this expression is TRUE, because 2 * 3 evaluates to 6,
which is a member of the set [1..10].

2.5.5 Precedence of Operators

The operators in an expression establish the order in which PASCAL
evaluates the expression. Table 2-6 lists the order of precedence of
the operators, from highest to lowest.

Table 2-6
Precedence of Operators

Operators Precedence

NOT Highest
* *
*, /, DIV, MOD, AND

+, -, OR

=, <>, &, <=, >, >=, IN Lowest

PASCAL evaluates operators of equal precedence {such as + and -) from
left to right. You must use parentheses for correct evaluation when
you combine relational operators. For example:

A <= X AND B <= Y

If you do not use parentheses, PASCAL will attempt to evaluate this
expression as A <= (X AND B) <= Y and generates an error. The
expression needs parentheses, as follows:

w1

(A <= X) ANb (B <= Y)

To evaluate the rewritten expression, PASCAL comparas the truth valuesA
of the two relational expressions.

You can use parentheses in any expression to force a particular order
of evaluation. For example:

Expression: Evaluates to:
8 * 5 DIV 2 - 4 16
8 * 5 DIV (2 - 4) -20

PASCAL evaluates the first expression according to the normal rules
for precedence. First it multiplies 8 by 5 and divides the result
(40) by 2. Then it subtracts 4 to get 16. The parentheses in the

PASCAL CONCEPTS

second expression, however, force PASCAL to subtract before
multiplying or dividing. Hence, it subtracts 4 from 2, getting -2.
Then it divides -2 into 40, with -20 as the result.

Parentheses can also help to clarify an expression. For instance, you
could write the first example as follows:

((8 * 5) DIV 2) - 4

The parentheses eliminate any confusion about how the expression is to
be evaluated.

2.6 SCOPE OF IDENTIFIERS

The scope of an identifier is the part of the program in which you
have access to the identifier. 1In a PASCAL program, the scope of a
constant, type, variable, or subprogram identifier 1is the block in
which the identifier is declared. Figure 2-2 illustrates the scope of
identifiers declared at various levels.

Declarations in the main program block specify global identifiers,
which can be accessed in the main program and in all nested
subprograms. For example, A and B in Figure 2-2 are global
identifiers.

Declarations in subprogram blocks specify local identifiers. You can
use a local identifier in the subprogram that contains its declaration
and in all its nested subprograms. For example, the identifiers C and
D are local to procedure Levella and its nested subprograms Level2a
and Level3a. You can use C and D in any of these subprograms, but not
in the main program or in the subprograms Levellb, Level2b, and
Level2c.

Similarly, local identifiers declared in Levellb are accessible to
Levellb, Level2b, and Level2c, but not to Levella, Level2a, Level3a,
or the main program.

In general, once you define an 1identifier, it retains its meaning
within the block containing its declaration. You can, however,
redefine an identifier in a subprogram at a lower level. If you do
so, the 1identifier assumes its new meaning only within the scope of
the redefining block. Outside this block, the identifier keeps its
original meaning. For example, B is declared at program level and
redefined in Level2c. Within the scope of Level2c, B denotes a
Boolean wvariable. Everywhere else in the program, however, B denotes
an integer.

The identifiers accessible to each routine in Figure 2-2 are 1listed
below.

Routine Variables
Main program A, B (integer)
Levella A, B (integer), C, D
Level2a A, B (integer), C, D, E
Level 3a A, B (integer), C, D, E, F
Levellb A, B (integer), G
Level2b A, B (integer), G, H
Level2c A, B (Boolean), J

PASCAL CONCEPTS

PROGRAM Level0O (INPUT, OUTPUT);
VAR A,B : INTEGER;

PROCEDURE Levella (Z, Y);:
VAR C,D : INTEGER;

FUNCTION Level2a (X) : INTEGER;
VAR E : REAL;

PROCEDURE Level3a (W);
VAR F : REAL;
END; (*End procedure Level3a*)

END; (*End function Level2a¥*)

.

END; (*End procedure Levella*)

PROCEDURE Levellb (V, U, T);
VAR G : INTEGER;

PROCEDURE Level2b (S, R, Q);
VAR H : REAL;

END; (*End procedure Level2b*)

PROCEDURE Level2c (P, 0);
VAR B : BOOLEAN;
J : CHAR;

END; (*End procedure Level2c*)

END; (* ..a procedure Levellb*)

END. (*End -rogram LevelO%*)

Figure 2-2 Scope of Identifiers

ZK-072-80

CHAPTER 3

THE PROGRAM HEADING AND THE DECLARATION SECTION

The first two parts of a PASCAL program are the program heading and
the declaration section. The program heading specifies the program
name and the input and output files.

The declaration section can contain the following sections:

e LABEL -- declares labels for use by the GOTO statement

e CONST -- defiﬁes identifiers to represent constant values

e TYPE -- defines user-defined, structured, and pointer types
® VAR -- declares variables of all types

® VALUE -- initializes variables

e PROCEDURE and FUNCTION -- declare subprograms

Your program need not include all these sections, but the sections
that are present must follow the order listed above. Although you can
specify many labels, constants, types, variables, values, and
subprograms, each section can appear only once per declaration
section. Thus, you can use the reserved words LABEL, CONST, TYPE,
VAR, and VALUE only once in each declaration section.

This chapter describes the program heading (Section 3.1), 1label
declarations (Section 3.2), and constant definitions (Section 3.3).
It also outlines type definitions (Section 3.4), variable declarations
(Section 3.5), and value initializations (Section 3.6). Chapter 4

covers types, variables, and values in detail. Refer to Chapter 6 for
information on procedures and functions.

PROGRAM

3.1 THE PROGRAM HEADING

The program heading begins the PASCAL program. It gives the program a
name and lists the external file variables the program uses.

Format
PROGRAM pProgram-name [[(file-variablel|,file-variable <« 1DN ;

program-name

Specifies an identifier to be used as the name of the program.

THE PROGRAM HEADING AND THE DECLARATION SECTION

¢ -var lable

Specifies the identifier associated with an external file’
variable that the program uses.

The program name appears only in the heading and has no other purpose
within the program. Because PASCAL treats the program name as a
global identifier, it cannot be redefined at the program level.

The file variables listed in the program heading correspond to the
external files that the program uses. The heading must include the
names of all the external file variables. The predeclared text file
variables INPUT and OUTPUT, by default, refer to your terminal (in
interactive mode) or to the batch input and log files (in batch mode).
You must declare file variables for all other external files in the

main program declaration section, and specify those variables in the
program heading. See Section 4.7 for more information on files.

Examples

1. PROGRAM Testl;
The program heading names the program Testl, but omits the file
variable 1list. This program does not use the terminal or any
other external file.

2. PROGRAM Squares (OUTPUT, INPUT);

The program heading names the program Squares and specifies the
predeclared file variables INPUT and OUTPUT.

3. PROGRAM Payroll (Employee, Salary, OUTPUT);

The program heading names the program Payroll and specifies the
external file variables Employee, Salary, and OUTPUT.

3.2 LABEL DECLARATIONS

A label makes a statement accessible from a GOTO statement (see
Section 5.6). The label section 1lists all the labels 1in the
corresponding executable section.

Format

LABEL labell|,label ...]l:

label

Specifies an unsigned integer. When you declare more than one
label, you can specify them in any order.

A label can precede any statement in the program but can be accessed
only by a GOTO statement. You must use a colon (:) to separate the
label from the statement it precedes. Each label must precede exactly
one statement within the scope of its declaration.

THE PROGRAM HEADING AND THE DECLARATION SECTION

The ccope of a label <« the block in which it is declared. Therefore,
you can transfer oontooc Dron une program anit to another program unit
in which the former iz nested. For example:

PROGRAM Trial (INPUT,OUTPUT);
LAREL 75;

PROCEDURE Max;

LABEL 50;

BEGIN
50 : WRITELN ('Testing fairness of tosses');
GOTO 75;

END; (*End of procedure Max¥*)

BEGIN

75 . WRITELN ('Not fair! A weighted coin!');

The GOTO statement in the procedure Max transfers control to the main
program statement that has the label 75. However, you cannot use a
GOTO statement in the main program to transfer control into the
procedure at label 50. For further information, see Section 5.6,
which describes the GOTO statement.

Example
LABEL 0, 6656, 778, 4352;

The label section specifies four labels: 0, 6656, 778, and 4352.
Note that the labels need not be specified in numeric order.

CONST

3.3 CONSTANT DEFINITIONS

The constant section defines identifiers that represent constant
values,

Format

CONST constant-name = value ; |[constant-name = value ; ...]

constant-name

Specifies the identifier to be used as the name of the constant.

value

Specifies an integer, a real number, a string, a Boolean value, a
enumerated type, or the name of another constant that is already
defined.

3-3

THE PROGRAM HEADING AND THE DECLARATION SECTION

Note that the value assigned to a constant identifier cannot be an
expression. String values must be enclosed in apostrophes.

The use of constant identifiers makes a program easier to read,

understand, and modify. If you need to <change the value of a
constant, simply modify the CONST declaration instead of changing each
occurrence of rthe wvalue in the program. This capability makes

programs simpler to maintain and easier to transport.

Examples
CNST Year = 1979;
Month = 'January';
Initial = 'p';
Pi = 3.1415927;
Tinyd = 1.7253D-10;
Lie = FALSE;
Untruth = Lie;
The CONST secrtion specifies seven constant identifiers. Year,
Pi, and Tinyd are integer, real, and double-precision numeric
~constants, Month represents a string value and Initial

represents a character value. Both Lie and Untruth are equal to
the Boolean value FALSE.

TYPE

3.4 TYPE DEFINITIONS

The type definition introduces the name and set of values for a type.
Chapter 4 describes data types and includes examples of type
definitions.

Format

It

TYPE type-identifier type-definition;
[type-identifier = type definition;...]

type-identifier

Specifies the identifier to be used as the name of the type.

type-definition

Defines a type. The type can be:
o Predefined scalar (Section 4.1)
e Enumerated (Section 4.2)
e Subrange (Section 4.3)
e Array (Section 4.4)
e Record (Section 4.5)
® Set (Section 4.6)
e File (Section 4.7)

e Pointer (Section 4.8)

3-4

THE PROGRAM HEADING AND THE DECLARATION SECTION

Note that you can use the identifier for a previously defined type in
place of the type definition for a new type. 1In addition, you can
define packed types for arrays, records, sets, and files, as described
in Section 4.9.

VAR

3.5 VARIABLE DECLARATIONS

The wvariable declaration creates a variable and associates an
identifier and a type with the variable. Chapter 4 describes data
types and shows how to declare variables of each type.

Format

VAR variable-name |[[,variable-name...]] : type ;
[[variable-name [,variable-name...] : type ;...]

variable-name

Specifies the identifier to be used as the name of the variable.
type
Names or defines a type. The type can be:
® Predefined scalar (Section 4.1)
® Enumerated (Section 4.2)
e Subrange (Section 4.3)
® Array (Section 4.4)
® Record (Section 4.5)
® Set (Section 4.6)
e File (Section 4.7)
e Pointer (Section 4.8)

You can also declare packed array, record, set, and file variables, as
described in Section 4.9.

VALUE
3.6 VALUE INITIALIZATIONS

The value section initializes variables that are declared in the main
program declaration section. You can initialize scalar, array,
record, and set variables with constants of the same type.

The description below presents general information on value
initializations. The exact format of the value initialization depends
on the type of variable being initialized. For detailed formats and
examples, refer to the section in Chapter 4 that describes the type of
the variable you need to initialize.

THE PROGRAM HEADING AND THE DECLARATION SECTION

Format

VALUE variable-name := value ;
[[variable-name := value ;...]

variable-name

Names the variable to be initialized. You cannot specify a 1list
of variable names.

value

Specifies a constant of the same type as the variable, or
specifies a constructor for an array or record variable.

You must specify a value of the correct type for each variable being
initialized. You cannot specify an expression. Scalar variables
require scalar constants and set variables require set constants. For
arrays and record variables, you specify the value to be assigned to
each element or field in a parenthesized 1list called a constructor
(see Sections 4.4.3 and 4.5.2).

The VALUE 1initialization can appear only in the main program
declaration section. You cannot initialize variables in procedures,
functions, or modules.

CHAPTER 4

DATA TYPES

This chapter describes PASCAL data types, covers the use of the TYPE,
VAR, and VALUE sections, and provides general information about how to
use variables of each type. General formats and rules for the TYPE,
VAR, and VALUE sections are provided in Chapter 3.

PASCAL provides two methods of declaring variables of a particular
type. You can define the.type in the TYPE section, and then use a
declaration in the VAR section to declare one or more variables of the
newly defined type. As described in Chapter 3, the general formats
are as follows:

TYPE type-identifier = type-definition;
VAR variable-name : type-identifier;

Alternatively, you can declare a variable by specifying the type
definition 1in the VAR section and omitting the type identifier and
type definition from the TYPE section. The general format for this
method is the following:

VAR variable-name : type-definition;

This chapter presents the format of the type definition for each
PASCAL type. You can use the definition in either the TYPE or VAR
section, as presented above. Examples of both methods appear
throughout the chapter.

4.1 PREDEFINED SCALAR TYPES

PASCAL provides predefined types for integer, real, character, and
Boolean data. Section 2.4.1.1 introduces these types. To declare a
variable of a predefined scalar type, use a declaration 1in the VAR
section.

Type Definition Format

INTEGER
REAL
SINGLE
DOUBLE
CHAR
BOOLEAN

Variables of type INTEGER can assume numeric values as described in
Section 2.1.1. The values you assign to an integer variable must be
of type INTEGER, of a type equivalent to INTEGER, or of an integer
subrange type.

DATA TYPES

The identifiers REAL, SINGLE, and DOUBLE denote the real number types
(see Section 2.1.2). REAL and SINGLE are synonymous; both denote
single-precision real number values. The type DOUBLE allows vyou to
declare double-precision real variables. You can assign real and
integer values to a variable of type REAL, SINGLE, or DOUBLE. TIf you
assign an integer wvalue to a real variable, PASCAL converts the
integer to a real value.

Variables of type CHAR are single characters from the ASCII character
set. The values you assign to a CHAR variable must be of type CHAR or
of a character subrange type.

Variables of type BOOLEAN can assume the values TRUE and FALSE. For
assignment purposes, the type BOOLEAN is compatible with those
variables and expressions that yield a Boolean result.

You can initialize a variable of a predefined scalar type with a
constant of an assignment-compatible type, as shown in the example
below. You cannot use an expression in a VALUE initialization.

Examples

VAR I, Temp : INTEGER;
C : REAL;
Cc : DOUBLE;
Initial : CHAR;
Answer : BOOLEAN;
Grade : CHAR;

VALUE

The VAR section declares the variables I, Temp, C, Cc, Initial,
Answer, and Grade. Note that you can group two or more variables
of the same type in the VAR section, but you need not. For
example, the integer variables I and Temp are declared together,
but the character variables 1Initial and Grade are declared
separately. :

The VALUE section initializes six of the seven variables. You
can specify the variables 1in any order; they need not follow
their order of declaration. Unlike the VAR section, vyou cannot
group variables in the VALUE section, even if the variables will

be assigned the same value. Thus, the variables I and Temp must
be initialized separately.

4.2 ENUMERATED TYPES
An enumerated type is an ordered set of values denoted by identifiers.
To define an enumerated type, 1list in order all the identifiers
denoting its values.
Type Definition Format

(identifier [[,identifier...]])

identifier

Specifies a constant value for the type.

4-2

DATA TYPES

The values of an enumerated type follow a left-to-right order, so that
the last value in the list is greater than the first. For example:

TYPE Seasons = (Spring, Summer, Fall, Winter) ;

The relational expression Spring < Fall is TRUE because Spring
precedes Fall in the list of constant values.

The only restriction on the values of an enumerated type 1is that a
value 1identifier cannot be defined for any otner purpose. For
example, the same TYPE section cannot also include the following:
Schoolyear = (Fall, Winter, Spring);
To initialize a variable of an enumerated type, specify a constant
value. For example, you can initialize the variable Quarter of type
Seasons as follows:
VALUE Quarter := Fall;
The variable Quarter takes on the initial value Fall.

Examples

TYPE Beverage = (Milk, Water, Cola, Beer) ;
Sport = (Swim, Run, Ski);

VAR Cookie : (Oatmeal, Choc_Chip, Peanut Butter, Sugar);
Exercise, Fun : Sport;
Drink : Beverage;

VALUE Cookie := Sugar;
Fun := Ski;

The TYPE section defines the types Beverage and Sport, listing
all the values that variables of each type can assume.

The VAR section declares the variable Cookie, which can have the
values Oatmeal, Choc_Chip, Peanut Butter, and Sugar. The
variables Exercise and Fun are declared of type Sport, and Drink
is declared of type Beverage.

Initial values are established for the variables Cookie and Fun.

4.3 SUBRANGE TYPES

A subrange specifies a limited portion of another scalar type (called
the base type) for use as a type.

Type Definition Format

lower-limit..upper-limit
lower-limit

Specifies the constant value at the lower limit of the subrange.
upper-limit

Specifies the constant value at the upper limit of the subrange.

DATA TYPES

The subrange type is defined only for the values between and ipcluding
the lower and upper limits. The limits you specify must be constants;
they cannot be expressions. Use the subrange symbol (..) to separate
the 1limits of the subrange. The values in the subrange are in the
same order as in the base type.

The base type can be any enumerated or predefined scalar type except a
real type. You can use a subrange type anywhere in the program that
its base type is legal. The rules for operations on a subrange are
the same as the rules for operations on its base type. A subrange and
its base type are compatible.

The use of subrange types can make a program clearer. For example,
integer values for the days of the year range from 1 to 366. Any
value outside this range is obviously incorrect. You could specify an
integer subrange for the days of the year as follows:

VAR Day Of Year : l..366;

By specifying a subrange, you indicate that the values of the variable
Day Of Year are restricted to the integers from 1 to 366. If you use
the Check option at compile time, the system generates a run-time
error for an out-of-range assignment to a subrange variable. In this
example, such an error occurs when an integer less than 1 or greater
than 366 is assigned to Day Of Year.

Examples

TYPE Months = (Jan, Feb, Mar, Apr, May, Jun,
Jul, Aug, Sep, Oct, Nov, Dec);

VAR Camp Mos : May..Oct;
Leaf Mos : Sep..Nov;
First Half : 'A'..'M';

Word : 0..65535;

VALUE Camp Mos := Jul
First Half := 'A';

This example defines the variables Camp Mos and Leaf Mos as
subranges of the enumerated type Months. The variable First Half
is a subrange of the ASCII characters, with possible values
uppercase A through uppercase M. The variable Word is a subrange
of the integers from 0 to 65535. The VALUE section initializes
Camp Mos and First Half. You initialize subrange variables in
exactly the same way that you initialize variables of the base
type.

4.4 ARRAY TYPES
An array is a group of elements of the same type that share a common
name. You refer to each element of the array by the array name and a
subscript (or index). An array type definition specifies the type of
the subscripts and the type of the elements.
Type Definition Farmat

ARRAY [subscript-type([,subscript-type...]] OF element-type

subscript-type

Specifies the type of the subscript. The subscript type can be
an 1integer subrange, character, Boolean, or enumerated type, but
not a real type,

4-4

DATA TYPES

element-type

Specifies the type of the elements of the array.

The elements of an array can be of any type. For example, you can
define an array of integers, an array of records, or an array of real
numbers. An array of arrays is a multidimensional array, as described
in Section 4.4.1 below.

The subscripts of an array must be of a scalar type, but cannot be
real numbers. Note that you cannot specify the type INTEGER as the
subscript type. To use integer values as subscripts, you must specify
an integer subrange. (An exception to this is dynamic array
parameters; see Section 6.3.2.)

The range of the subscript type establishes the size of the array and
how it is indexed. For example: .

TYPE Letters = ARRAY [1..10] OF CHAR;
VAR Letl : Letters;

The array variable Letl has 10 elements, referred to as Letl[l],
Letl1[2], Letl[3], and so on through Letl[10].

You can use array elements in expressions anywhere you can use
variables of the element type. For the array as a whole, however,
only the assignment (:=) operation is defined. An exception to this
rule is character strings, as described in Section 4.4.2.

4.4.1 Multidimensional Arrays

An array with elements of an array type is a multidimensional array.
An array can have any number of dimensions, and each dimension can
have a different subscript type. For example, the following declares
a 2-dimensional array variable:

VAR Two D : ARRAY [0..4] OF ARRAY ['A'..'D'] OF INTEGER;

PASCAL allows you to abbreviate the definition by specifying all the
subscript types in one pair of brackets. For example:

VAR Two D : ARRAY [0..4,'A'..'D'] OF INTEGER;

To refer to an element of this array, you specify two subscripts, one
integer and one character, 1in the order they were declared:
Two D[0,'A'], Two DI0,'B'}], and so on. You can also specify
Two_D[O0]['A']. The first subscript indicates the rows of the array
and the second subscript indicates the columns. Figure 4-1 represents
the array Two_D.

When you refer to the elements of Two D, the first element in the
first row is Two D[O0,'A']. The second element in this row is
Two D[O,'B']. The first element in the second row 1is Two D[1l,'A'].
The last element in the last row is Two D[4,'D']. In general, element
j of row i is Two_DI[I,J].

You can define arrays of three or more dimensions in a similar
fashion. For example:

TYPE Chessmen = (QR,ON,0B,Q,K,KB,KN,KR,P,E); (*E means empty square¥*)

VAR Chess3d : ARRAY [1..3, 1..8, QR..KR] OF Chessmen;

4-5

DATA TYPES

A ‘B’ 14 D
0
1
2
3
4)
TWO_D
ZK-028-80

Figure 4-1 Two-Dimensional Array

This declaration specifies a 3-dimensional chess game. The indexes of
the array are the levels, the ranks, and the files of the chessboard.
For example, the reference Chess3d [1,1,9r] specifies the first level,
first square in the upper left corner (bottom level, first rank,
Queen's Rook file). Figure 4-2 illustrates the three levels of this
array.

QR ON QB Q K KB KN KR QR QN QB Q K KB KN KR QR QN QB Q K KB KN KR

-
-
-

® N O T A WwN
0 N OO A WTN
® N o A WwN

CHESS3D[1,n,CHESSMEN) CHESS3D[2,n,CHESSMEN] CHESS3D [3,n,CHESSMEN]
(bottom) (middle) (top)

ZK-029-80

Figure 4-2 Three-Dimensional Array

When storing wvalues 1in an array, PASCAL increments the first
(leftmost) dimension slowest and the 1last (rightmost) dimension
fastest. In the 3-dimensional array Chess3d, PASCAL starts by holding
the first two subscripts constant while stepping through the values of
Chessmen. Thus, the first values are assigned to elements Chess3d
[1,1,0R] through Chess3d [1,1,KR].

Next, the second subscript is incremented and values are assigned to
the elements Chess3d [1,2,0R] through Chess3d (1,2,KR]. After these
eight elements are assigned, the second subscript is again
incremented, and values are assigned to Chess3d [1,3,0R] through
Chess3d [1,3,KR]. The assignment process continues with the first
subscript held constant until the second subscript has been
incremented from 1 to 8. Then the first subscript is incremented and
the process 1is repeated. Hence, all values for the bottom level

DATA TYPES

(denoted by Chess3d [1,n,Chessmen]) are stored before any values for
the middle 1level (denoted by Chess3d [2,n,Chessmen]). The top level
(denoted by Chess3d [3,n,Chessmen]) receives its values last. Figure
4-3 illustrates this order.

QR QN QB Q K KB KN KR QR ON QB Q K KB KN KR QR ON QB Q K KB KN KR

...1 1 1
----- N - PR

L2 .
s !
S -y

RN e
: '_'/»4 . _",/4
s s
T A

L..,08 L..,06
SR Y
.. .8 L8

CHESS3D [1.n,CHESSMEN] CHESS3D[2,n,CHESSMEN] CHESS3D [3,n,CHESSMEN]
(bottom) (middle) (top)

ZK-030-80
Figure 4-3 Storing Elements in an Array

4.4.2 sString Variables

A character string variable in PASCAL is define. : a packed array of
characters with a 1lower bound of 1. To declare a string variable,
specify a packed array of the proper length. For example:

VAR Name : PACKED ARRAY [1..20] OF CHAR;

This declaration allows you to store a string of 20 characters in the
array variable Name. The 1length of the String must be exactly 20
characters. PASCAL neither adds blanks to extend a shorter string nor
truncates a longer string. If you specify a string of incorrect
length, an error occurs.

You can assign to a string variable the value of any string constant
or variable of the correct length. You can also compare strings of
the same length with the relational operators <, <=, >, >=, =, and <>.
The result of a string comparison depends on the ordinal value (in the
ASCII character set) of the corresponding characters in the strings.
For example:

'motherhood' > 'cherry pie’
This relational expression is TRUE because lowercase 'm' comes after
lowercase 'c' in the ASCII character set. If the first characters in
the strings are the same, PASCAL looks for differinc characters, as in
the following:

'stringl' < 'string2'

This expression is also TRUE because the digit 1 precedes the digit 2
in the ASCII character set.

4.4.3 1Initializing Arrays

You can use a VALUE initializatisn i +',e following form to initialize
an array with elements of any Ltype . cept a file.

DATA TYPES

Format
VALUE variable-identifier := [[type-identifier]l({[n OF])] value, ...

variable-identifier

Specifies the name of an array variable. You cannot initialize
an array that has elements of a file type. :

type-identifier

Specifies the type of the array being initialized. The type
identifier is optional and 1is used only for documentation
purposes.

n
Denotes an integer repetition factor that specifies the number of
consecutive elements to be initialized with the next value.
value

Specifies a constant or constructor of the same type as the array
elements.

A constructor is the actual values an array is to be initialized to.
Fach row of values is contained within parentheses. The values in-the
constructor must be constants; expressions are prohibited. You must
specify a value for every element of the array. You cannot
selectively initialize array elements.

To initialize a l-dimensional array, specify the initial wvalues in
parentheses. For example, you can initialize a S-element array with
integers as follows:

VALUE My Array := (1,2,3,4,5);

To initialize consecutive elements with the same value, use the
repetition factor:

VALUE My Array := (5 OF 1);

To initialize a 2-dimensional array, specify a constructor for each
row, in parentheses. For example:

VAR Sun : ARRAY [0..3, 1..5] OF REAL;

VALUE Sun := ((1.0, 1.1, 1.2, 1.3, 1.4), 2 OF (5 OF 0.0),
(10.1, 2 OF 11.0, 2 OF 11.1));

'

or

VALUE Sun := ((l1.0, 1.1, 1.2, 1.3, 1.4), (0.0, 0.0, 0.0, 0.0, 0.0),

(0.0, 0.0, 0.0, 0.0, 0.0), (10.1, 11.0,
11.0, 11.1, 11.1));

PASCAL initializes array elements in the same order that it stores

them. For example, Figure 4-4 shows the initial value assigned to
each element of Sun.

4-8

DATA TYPES

3| 10.1 11.0 11.0 1.1 1.1

ZK-031-80

Figure 4-4 Initial Values of 2-Dimensional Array

You can also initialize arrays of three or more dimensions. For
example:

TYPE Cube = ARRAY[l..2, 1..3, 1..4] OF CHAR;

VAR Solid, Block : Cube;

VALUE Solid := Cube (2 OF (3 OF (4 OF YRUYY))
This VALUE initialization assigns the asterisk character (*) to all
elements of Solid. The type identifier Cube documents the type of
this array for anyone who reads the declaration.
To initialize a string variable (a packed array of characters with a
lower bound of 1), use the individual characters or a string constant.
Suppose your program contains the following declaration:

VAR Pres : PACKED ARRAY [1..10] OF CHAR;
You can initialize the array in either of the following ways:

VALUE Pres := (IJl,lEi'lFl,lF|,lEl,lRl,ISI'IOI,INIII l);

VALUE Pres := 'Jefferson ';

4.4.4 Array Type Compatibility

You can assign one array to another only if the arrays are identical
or compatible. Arrays of the same type or equivalent types are
identical. For example:

TYPE Salary = ARRAY [1..50] OF REAL;
Pay = Salary;

VAR Wage, Income : Salary;
Money : Pay:;

The arrays Wage and Income are identical because both are of type
Salary. The array Money of type Pay is identical to Wage and Income
because the type Pay 1is declared equivalent to the type Salary.
Identical arrays are always compatible.

DATA TYPES

Arrays that are not 1identical are compatible if they meet the
following criteria:

e They have the same number of elements.

¢ Their elements are of compatible types.

e Their subscripts are of compatible types.

o The upper bounds of their subscripts are equal.
e The lower bounds of their subscripts are equal.
® Both are packed or neither is packed.

® For packed arrays of subrange types, the bounds of the
subranges must be the same for both types.

The following two array types, though not identical, are compatible:

TYPE Grades = ARRAY [1..28] OF 0..4;
Feb Temps = ARRAY [1..28] OF INTEGER;

Both types define arrays with 28 elements, indexed from 1 to 28. The
integer subrange elements of type Grades are compatible with the
integer elements of type Feb Temps. Therefore, vyou can assign
variables of type Grades to variables of type Feb Temps, and vice
versa. Note that if the TYPE definition specified packed arrays, the
types Grades and Feb Temps would not be compatible.

: . PASCAL does not check for valid assignments to subranges that are part
of a structured type. If you assign an array of type Feb Temps to one
of type Grades, you must ensure that the values are 1in “the correct
range. An out-of-range assignment does not result in an error
message, even if the Check option is enabled at compile time.

4.4.5 Array Examples
1. VAR Raceresults : ARRAY[1l..50] OF Times;
VALUE Raceresults := (50 of 0);

This example declares the variable Raceresults as a b50-element
array of Times. (Assume that Times is a numeric scalar type
previously declared.) The VALUE declaration initializes
Raceresults by assigning 0 to each element.

2. TYPE Chessmen = (QR, ON, OB, 0, K, KB, KN, KR, P, E);
VAR Chess : ARRAY [1..8,0R..KR] OF Chessmen;

VALUE Chess := ((QR, ON, OB, 0, K, KB, KN, KR),
(8 OF P), 4 OF (8 OF E),
(8 OF P), (QR, ON, 0B, Q, K, KB, KN, KR)) ;

This example declares the type Chessmen and a 2-dimensional
chessboard variable. The VALUE declaration initializes the board
as it would be at the start of a game. The pieces from Queen's
Rook (QR) to King's Rook (KR) are lined up along each end of the
board, in the first and eighth rows of the array. The second and
seventh rows of the array contain Pawns (P). The third through
sixth rows are empty (E).

DATA TYPES

3. TYPE String = PACKED ARRAY [1..10] OF CHAR;
VAR Composer, Word, Empty : String;
VALUE Word := 'engrossing';
Composer := 'C.P.E.Bach';
Empty := (10 OF ' ');

This example declares three string variables. It initializes the
variables Word and Composer with string constants, and
initializes the variable Empty as a string of 10 spaces.

4, CONST Days = 31;
TYPE Weather = (Rain, Snow, Sunny, Cloudy, Foggy);
Month = array [l..Days] of Weather;

This example shows how you can use a constant identifier in the
subscript type. The subscripts of arrays of type Month range
from 1 to the value of the constant Days.

4.5 RECORD TYPES

The record is a convenient way to organize several related data items
of different types. A record consists of one or more fields, each of
which contains one or more data items. Unlike the elements of an
array, the fields of a record can be of different types. The record
type definition specifies the name and type of each field.

Type Definition Format

RECORD

field-identifiers : type ;[([field-identifiers : type...]l;llvariant-clause J] }
variant-clause

END;

field-identifiers

Specifies the names of one or more fields. The names must be
identifiers and separated by commas.

type

Specifies the type of the corresponding field(s). A field can be
any type.

variant-clause

Specifies the variant part of the record. See Section 4.5.1.

The names of the fields must be unique within the record, but can be
repeated in different record types. For instance, you could define
the field Name only once within a particular record type. Other
record types, however, could also have fields called Name. The scope
of field identifiers, within a record type 1is the record type
definition itself.

The values for the fields are stored in the order in which the fields
are defined. For example:

VAR Team_Rec : RECORD
Wins : INTEGER;
Losses : INTEGER;
Percent : REAL
END;

4-11

DATA TYPES

The values for these fields are stored in the order Wins, Losses,
Percent.

To refer to a field within a record, specify the name of the record
variable and the name of the field, separated by a period. For
instance, Team_Rec.wins, Team_Rec.Losses, and Team Rec.Percent refer
to the three fields of the record Team Rec, declared above. You can
specify a field anywhere in the program that a variable of the field
type is allowed. Thus, you could write:

Team_Rec.wins 1= 9;
Team_Rec.Losses := 4;
Records can include fields that are themselves records. For example:

VAR Order : RECORD
Part : INTEGER;
Received : RECORD
Month : (Jan, Feb, Mar, Apr, May, Jun,
Jul, Aug, Sep, Oct, Nov, Dec);
Day : 1l..31;
Year : INTEGER

END;
Inventory : INTEGER
END;
The fields in this record are referred to as Order.Part,

Order.Received.Month, Order.Received.Day, Order.Received.Year, and
Order.Inventory. The WITH statement provides an abbreviated notation
for specifying the fields of a record (see Section 5.5).

4.5.1 Records with Variants

A record variable can contain different kinds of information at
different times if its type definition specifies one or more variants.
A variant is a field or group of fields that can contain a different
type or amount of data at different times during execution. Thus, two
variables of the same record type can contain different types of data.

To specify a variant, include a variant clause in the record type
definition. The variant clause must be the last field in the record.

Format

CASE tag-field OF

case-label-list : ([field-identifiers : type] [[;field-identifiers : type...

.

tag-field

Indicates the current variant of the record. You can specify the
tag field in two ways:

1. tag-name : tag-type
The tag field is a field in the record that is common to

all variants. Tag-name and tag-type define the name and
type of this field. The tag-type can be any scalar type

D)

DATA TYPES

except a real type. You can use the tag field in the
same way that you use any other field in the record,
referring to using the record.fieldname format.

2. tag-type

You must keep track of the currently valid variant. The
tag type can be any scalar type except a real type.

case-label-list

Specifies one or more constants of the tag field type.

field-identifiers

Specifies the names of one or more fields. The field names must
be identifiers and must be separated by commas. Note that,
instead of the field-identifiers, you can specify another variant
clause, as in the last example in this section.

type
Specifies the type of the variant field.

When you specify the tag-field in the first form
(tag-name : tag-type), you should reference only the fields in the
currently valid variant. Thus, the value of the tag field must appear
in the case label list that precedes the fields you are referencing.
The following example shows the use of this form:

TYPE Stock = RECORD
Part : 1..9999;
Stock_Quantity,: INTEGER;
Supplier : Name;
Case Onorder : BOOLEAN OF
TRUE :(Promised : Day;
Order Quantity : INTEGER;
Price: real);
FALSE :(Last Shipment : Day;
Rec Quantity : INTEGER;
Cost : REAL)
END;

Assume that the types Name and Day have already been defined. In the
example, the last three fields in the record type vary depending on
whether the part is on order. The tag name Onorder is defined in the
variant clause. Records for which the wvalue of Onorder is TRUE
contain information about the current order. Records for which this
variable is FALSE contain information about the previous shipment.

In the second way of specifying the tag field, you use only a tag
type, as in this example:

TYPE Sex = (Female, Male);
Hosp = RECORD

Patient : Name;

Birthdate : DATE;

Age : INTEGER;

CASE Sex OF
Female : (Births : 1..30);
Male : ()

END;

In this example, you must keep track of the currently valid variant.

DATA TYPES

You can define a variant only for the 1last field in the record.
Variant fields can, however, be nested, as in the following example:

TYPE Sex = (Female, Male);
Hosp = RECORD
Patient : Name;
Birthdate : Date;
Age : INTEGER;
CASE Parsex : Sex of
Male : ();
Female : (CASE Births : BOOLEAN OF
FALSE : ();
TRUE : (Nofkids : INTEGER))
END;

This record type contains the name, birthdate, age, and sex of all
patients. In addition, it 1includes a variant field for each woman
based on whether she has had any children. A second variant, which

contains the number of children, is defined for women who have given
birth.

4.5.2 1Initializing Records

To initialize a record variable, specify a value for each field of the
record. :

Format
VALUE variable-identifier :=ﬁtypé—identifierﬂ(value[L value...]);

variable-identifier

Specifies the name of a record variable. The record cannot have
a field of a file type-.

type-identifier

Specifies the type of the record being initialized. The type
identifier 1is optional and is wused only for documentation
purposes.

value (s)
Specifies a constant of the same type as the corresponding field.

The parenthesized list of values is called a constructor. In the
constructor, the field wvalues are specified in the order the fields
are to appear in the record. If the record contains a variant, you
must initialize the tag field and the corresponding variant fields.
For example:

VAR Call : RECORD
Caller : PACKED ARRAY [l1..10] OF CHAR;
Time : REAL;
Subj : (Work, Play, Sales, Chat);
CASE Return : BOOLEAN OF
TRUE : (Hour : INTEGER);
FALSE : ()
END; .

VALUE Call := ('Washington', 10.30, CHAT, TRUE, 12);

DATA TYPES

This initialization assigns a string constant to the Caller field, a
real number to the Time field, and the identifier Chat to the Subj
field. It supplies the Boolean value TRUE for the tag field Return,
and initializes the variant field Hour with 12.

To initialize this record with a FALSE value for the tag field, vyou
could specify the following:

VALUE Call := ('Washington', 10.30, Chat,FALSE);
This initialization assigns the same values as the previous VALUE
initialization to all fields except the tag field. The tag field

value is now last in the 1list because the FALSE case of Return
specifies no additional fields.

You must always specify a value for the tag field, even if it has no
tag name, to ensure that PASCAL initializes the correct variant.

4.5.3 Record Type Compatibility

Two records are compatible if their types are identical or equivalent.
For example:

TYPE Life = RECORD

Born : INTEGER;
Died : INTEGER
END; .

Plantlife = Life;

VAR Mom, Dad : Life;
Coleus : Plantlife;

The record variables Mom, Dad, and Coleus are all compatible. Mom and
Dad are both of type Life, which is equivalent to type Plantlife.

Records of differing types are compatible if they meet the following
criteria:

e They have the same number of fields.
e Corresponding field types are compatible.

e Both are packed or neither 1is packed. If the types are
packed, corresponding fields of subrange types must have equal
bounds.

The following type is also compatible with Life and Plantlife:

TYPE Coords = RECORD
X : INTEGER;
Y : 0..100
END;

The integer subrange 0..100 is compatible with the type INTEGER.
However, PASCAL does not check for valid assignments to fields of
subrange types. If you assign a record of type Life to a record of
type Coord, you must ensure that the value of the field Died is within
the subrange 0..100. An out-of-range assignment does not result in an
error message.

DATA TYPES

If the records have variants, these criteria also apply:

For

e The records must have the same number of variants.

e Corresponding variants must have the same number of fields.

definition:

The types Info and School are compatible.

e Corresponding field types within corresponding variants must
be compatible.
e The case labels associated with the variants must agree in
number, but need not agree in value.
example, assume the program includes the following TYPE
TYPE Lets = 'A'..'D';
Info = RECORD
Size : INTEGER;
Calories : INTEGER;
Protein : 0..40;
Carb : INTEGER;
Case Vits : Lets OF
'A','C','D' . ();
'B' : (Niacin, Thiamine : BOOLEAN)
END;
Grades = 'A'..'F';
School = RECORD
Studentno : INTEGER;
Class : 1..5;
Hours : 1..30;

Incompletes : 1..6;

CASE Average : Grades OF
lBl'lCl,IDl s ();
'A' : (Sendlet, Firstsem : BOOLEAN)

END;

If you assign a variable of

one type to the other, however, you must be sure that both contain the
same variant.

4.5.4 Record Examples

1.

s - GRS o Er

TYPE Taxes = RECORD

Year : INTEGER;

Gross : REAL;

Net : REAL;

Deductions : INTEGER;

Itemized : BOOLEAN;

Interest : ARRAY [l1l..5] OF REAL

END;
VAR Fed, State, Local : Taxes;
VALUE Fed := (1979, 10000.0, 8000.0, 1500, FALSE, (5 OF 0.05));
This example declares and initializes the record Fed of type
Taxes. The field 1Interest 1is initialized with a constructor
within parentheses, because it is an array. Note that you can

specify a repetition factor for the elements of an array, but not
for the fields of a record.

DATA TYPES

2. TYPE String = PACKED ARRAY [1..15] OF CHAR;
Personal = RECORD

Name : String;

Address : RECORD
Number : INTEGER;
Street, Town : String;
Zip : 0..99999
END;

Age : 0..150
END;

VAR Faculty, Mascot, Student : Personal;
VALUE Faculty := ('Blaise Pascal ',(1623, 'Pensees Street ',
'Clermont Alaska', 1662), 39);

The type Personal contains the field Address, which 1is of a
record type. You must specify the values for this field in a
constructor, nested within the constructor for the other fields.
Without the parentheses enclosing the values 1623 to 1662, this
declaration would cause an error at compile time.

4.6 SET TYPES

A set is a collection of data items of the same scalar type. The set
type definition specifies the values that can be members of sets of
that type.

Type Definition Format
SET OF base-type
base-type

Specifies the type from which the members of sets of this type
are selected. You can use the identifier or definition of any
scalar type, except a real type.

A set can have a maximum of 256 members, and the ordinal value of each
member must be between 0 and 255. Therefore, real numbers cannot be
set elements, nor can integers outside the range of 0 to 255.

After defining a base type, you can declare set variables of that
type. For example:

TYPE Sports Equip = SET OF (Racquet, Shoes, Balls, Boots,
Skis, Poles, Goggles, Swimsuit);

VAR Ski_Equip, Tennis Equip, Swim_Equip, Sleep Equip : Sports Equip;

To initialize a set in the VALUE section, specify a set constant in
square brackets. For example:

VALUE Ski_Equip := [Boots..Goggles];
Tennis_Equip := [Racquet, Shoes, Balls];
Sleep Equip := [] ;

DATA TYPES

Sets are compatible if their base types are identical or equivalent.
For example:

TYPE Vitamins = SET OF (A, B1, B2, B6, Bl12, C, D, E, K);
Nutrients = Vitamins;

VAR Watersoluble, Fatsoluble : Vitamins;
Deficient : Nutrients;

The VAR section specifies three mutually compatible sets. Sets with
compatible base types are also compatible. For example: ‘

VAR ASCII : SET OF CHAR;
Specials : SET OF 'i1'..'/';

*These two sets are compatible because the base type of Specials is
compatible with the ASCII character set.

Packing has no effect on set compatibility except when passing sets as
VAR parameters (see Section 6.3.1.2). An unpacked set is compatible
with & packed set if both sets meet the criteria above.

You can build set expressions by using the set operators described in
Section 2.5.4. The set operators allow you to specify set
.intersection, difference, wunion, inclusion, and containment. In
addition, you can assign a set expression to a set variable (see
Section 5.2). The base type of the variable must include all members
of the set to which the expression evaluates.

Examples

1. TYPE Caps = SET OF CHAR;
VAR Vowel, Consonant : Caps;
VALUE Vowel := ['A', 'E', 'I', '0', 'u'l;
Consonant := ['B'..'D', 'F'..'H', "J'..'N', '"P'..'T', 'V',.
These declarations specify the set type Caps and two set
variables, Vowel and Consonant. The set VOWEL receives the set

of vowel characters as initial wvalues. The set Consonant is
initialized with the set of consonants.

2. VAR PDP11S : SET OF 1..255;
: VALUE PDP11S := (3, 4, 15, 20, 23, 34, 35, 40, 45, 55, 60, 70];

This example declares a set with an integer base type. The VALUE
declaration specifies a set constant containing integer-valued

members. Note that 780 cannot be a member of the set because its
ordinal value is greater than 255.

4.7 FILE TYPES
A file is a sequence of data components of the same type. The number
of components in a file is not fixed; a file can be of any length.
The file type definition specifies the type of the file components.
Type Definition Format

FILE OF component-type

component-type

Specifies the type of the components of the file. The component
type can be any scalar or structured type except a file type or
an array or record type containing a file element or field.

4-18

lzl];

DATA TYPES

The arithmetic, relational, Boolean, and assignment operators cannot
be used with file variables or structures containing file components.
For example, you cannot assign one file variable to another, nor can
you 1initialize a file wvariable. Likewise, you cannot compare two
arrays that have file elements.

Type compatibility for files applies only to files that are passed to
a subprogram. Two file parameters are compatible if their components
are compatible and if both are packed or neither is packed. You can
pass a file only as a VAR parameter. See Section 6.3.1.2 for more
information on VAR parameters.

PASCAL automatically creates a buffer variable for each file wvariable
you declare. The type of the buffer variable is the same as the type
of the file components. To denote the buffer variable, specify the
name of the associated file variable followed by a circumflex (7).
For example:

TYPE Scores = FILE OF INTEGER;
VAR Math Scores : Scores;

PASCAL creates Math Scores” as an integer buffer variable associated
with the file Math Scores. The buffer variable takes on the value of
the file component at the current file position. The predeclared
input and output procedures (see Chapter 7) move the file position,
thus changing the wvalue of the buffer variable. Figure 4-5
illustrates the contents of the file buffer during the use of the file

Math_Scores.

one file component
/

90 65 70 73 81 89

o

file position

70 File buffer Math Scores”

ZK-032-80

Figure 4-5 File Buffer Contents

Examples
1. VAR Truthvals : FILE OF BOOLEAN;

This declaration specifies a file of Boolean values. The buffer
variable for this file is denoted by Truthvals”.

2. TYPE Names = PACKED ARRAY [1..20] OF CHAR;
Data File = FILE OF Names;
VAR Accept List, Reject_List, Wait List : Data_File;

This example defines the array type Names and the file type
Data File, which contains a 1list of names. The VAR section
specifies three file variables of type Data File, with associated
buffer variables Accept List”, Reject_List“T and Wait List”.

DATA TYPES

3. VAR Results : FILE OF RECORD
Trial : INTEGER;
Date : RECORD
Month : (Jan, Feb, Mar, Apr, May, Jun,
Jul, Aug, Sep, Oct, Nov, Dec)
Day : 1..31;
Year : INTEGER
END;
Temp, Pressure : INTEGER;
Yield, Purity : REAL
END;

The VAR declaration specifies a file of records. To access the
fields of the record components, you would specify
Results”.Trial, Results”.Date.Month, and so on.

4.7.1 1Internal and External Files

A file that is local to a program or subprogram is called an 1internal
file. You can wuse an internal file only within the scope of the
program or subprogram in which it is declared. (See Section 2.6 for
rules of scope.) The system retains an internal file only during
execution of the declaring program or subprogram. After execution the
file 1is no longer accessible. The system creates a new file variable
with the same name the next time it executes the declaring unit. The
contents of the o0ld file are not available. 1Internal files are not
specified in the program heading. Only 1internal files can be
components of structured types.

An external file exists outside the scope of the program in which it
is declared. An external file can be created by the current PASCAL
program, another PASCAL program, or a program written in another
language. The system retains the contents of external file variables
after the execution of the program. You must specify the names of
external file wvariables in the program heading (Section 3.1).
External files cannot be part of a structured type.

4.7.2 Text Files

A text file is a file with components of type CHAR. PASCAL defines a
file type called TEXT as follows:

TYPE TEXT = FILE OF CHAR;
To declare a text file, specify a variable of type TEXT. For example:
VAR Poem : TEXT;

The text file variable Poem is a file of characters. For information
on reading and writing text files, see Chapter 7.

Text files are divided into lines. Each line ends with a line marker
separator. You can refer to the marker indirectly through the
predeclared procedures READLN and WRITELN (Sections 7.2.3 and 7.3.6)
and the predeclared function EOLN (Section 6.1.2).

The predeclared file variables INPUT and OUTPUT are files of type
TEXT. These files are the defaults for all the predeclared text file
procedures described in Chapter 7.

DATA TYPES

Examples
VAR Guide, Manual : TEXT;

This example declares the variables Guide and Manual as text
files.

4.8 POINTER TYPES

Normally, variables exist for the lifetime of the program or
subprogram in which they are declared. Program-level variables are
allocated 1in static storage and subprogram-level variables are
allocated on the stack. Some applications, however, require different
lifetimes within the PASCAL program or an unknown number of wvariables
of a certain type. PASCAL allows you to use dynamic variables to fill
these requirements.

Dynamic variables are dynamically allocated when needed during program
execution. Unlike other variables, dynamic variables are not named by
identifiers. Instead, you must refer to them indirectly with
pointers.

The pointer type allows you to declare any number of pointer variables
to refer to dynamic variables of a specified type. Each pointer
variable assumes as its value the address of a dynamic variable.

The pointer type definition specifies the type of the dynamic variable
to which pointers of the pointer type will. refer.

Type Definition Format
“base-type-identifier

base-type-identifier

Indicates the type of the dynamic variable to which the pointer
type refers. The base type can be any type.

Variables of a pointer type point to variables of the base type, and
are said to be bound to that type. To indicate a pointer variable,
specify its name. To indicate the dynamic variable to which a pointer
is bound, specify the pointer name followed by a circumflex("). For
example:

TYPE Myre~ = RECORD
A,B,C : INTEGER
END;
Ptr To Myrec = “Myrec;
VAR M : Ptr_To Myrec;

M is a pointer variable bound to records of type Myrec. Specify M® to
denote the record variable to which M points.

DATA TYPES

Pointer type definitions are the only place in a PASCAL program where
you can use an identifier before you define it. PASCAL allows you to
use the base type identifier in a pointer type definition before you
define the base type. For example:

TYPE Ptr To_Movie = “movie;
Name = PACKED ARRAY [l1..20] OF CHAR;
Movie = RECORD
Title, Director : Name;
Year : INTEGER;
Stars : FILE OF Name;
Next : Ptr To Movie
END; -

The TYPE section specifies the type identifier Movie before defining
the type Movie.

The value of a pointer is the storage address of the variable to which
it points. Thus, in the example above, the value of the field Next is
the storage address of Next", a dynamic record variable of type Movie.

Pointers assume values at initialization and through the New
procedure. The value of a pointer can be any legal storage address.
The constant NIL indicates that the pointer does not currently specify
an- address. Thus, a NIL pointer does not point to a variable.

VAX-11 PASCAL allows you to define pointers to types containing files.
For example:

TYPE X= "Y;
Y= RECORD
P : INTEGER;
Q : ARRAY[1l..3] OF TEXT
END;

The pointer type X points to record type Y, which contains a file
component in field Q. The files denoted by Q are not closed until
execution of the program terminates. If you do not want the files to
remain open throughout program execution, you must use the CLOSE
procedure (Section 7.1.1) to close them. For example, to close the
files defined in the TYPE section above, you must call CLOSE with the
parameters X~.0Q[1]l, X".Q[2], and X~.0[31].

You can initialize a pointer with the constant NIL as follows:
VALUE M := NIL;

As a result of the value initialization, the pointer wvariable M
initially points to no variable. NIL is the only value you can
specify to initialize a pointer.

Examples

TYPE Name = ARRAY [1..30] OF CHAR;
Ptr_To Hits = “hits;
Hits = RECORD
Title, Artist, Composer : Name;
Weeks On Chart, N _Sold : INTEGER;
First Version : BOOLEAN

END;
VAR Topten : ARRAY [1..10] OF Ptr To Hits;

VALUE Topten := (10 OF NIL);

DATA TYPES

This example defines the record type Hits to which pointers of
type Ptr To Hits refer. The array variable Topten has elements
of the pointer type Ptr To_Hits. Each element of the array 1is
initialized with the “constant Nil. The array Topten could be
used in creating a linked list of 10 records of type HITS.

4.9 PACKED STRUCTURED TYPES
You can pack any of the structured types by specifying PACKED in the
type or wvariable declaration. Packing means that the data items are
stored as in as few bits as possible.
Type Definition Format

PACKED type-definition

type-definition

Defines an array, record, set, or file type. See Sections 4.4
through 4.7.

You can initialize all packed structures in the VALUE section in the
same way that you initialize an unpacked structure of the same type.
In general, packed data items require less storage space than unpacked
data items of the same type. For specific information on the storage
space allocated to packed and unpacked types, refer to the VAX-11
PASCAL User's Guide.

In PASCAL, a packed array of characters specifies a string variable.
See Section 4.4.2,

Examples

1. TYPE Ranges = PACKED RECORD
Word : 0..65535;
Byte : 0..32767;
Bit : BOOLEAN
END;

This example defines a record type with three fields, each of
which is packed as densely as possible.

2. VAR City Census : PACKED ARRAY [1..25] OF 2500..50000;
VALUE City Census := (25 OF 0);
This example declares the variable City Census as a 25-element.

array of integer values in the subrange from 2500 through 50000.
An initial value of 0 is assigned to each element of the array.

CHAPTER 5

PASCAL STATEMENTS

VAX-11 PASCAL provides the following statements to perform actions

within
.
.
°
'
°

Any of

the program:

Assignment statement .
CASE statement °
FOR statement)
GOTO statement]
IF-THEN statement)

these statements can appear

a PASCAL program, procedure, or
compound statement, which allows you to group statements.

IF-THEN-ELSE statement
Procedure calls

REPEAT statement

WHILE statement

WITH statement

anywhere. in the executable part of
function. PASCAL also includes the

This chapter presents reference information on each of the statements,
organized as follows:

°
[]
PASCAL

call.

The compound statement
The assignment statement
Conditional statements:
CASE
IF-THEN
IF-THEN-ELSE
Repetitive statements:
FOR |
REPEAT
WHILE
The WITH statehent
The GOTO statement

The procedure call

includes both simple and structured statements. The simple
statements are the assignment and GOTO statements and the procedure
The compound, conditional, repetitive, and WITH statements are

PASCAL STATEMENTS

the structured statements. They enclose simple and structured
statements that must be executed in order, repetitively, or when
conditions are met. You can use a structured statement anywhere in
the program that a simple statement is allowed. This manual uses the
term statement to mean either a simple or a structured statement.

Compound Statement
5.1 THE COMPOUND STATEMENT

The compound statement allows for grouping PASCAL statements for
sequential execution, as a single statement.

Format

BEGIN

Statementl[[;statement2...]

END;
Sstatement

Denotes a simple or structured statement.
You can create a compound statement using any combination of PASCAL
statements, including other compound statements. You must wuse
semicolons to separate the statements that make up the compound
statement; however, no semicolon is required between the 1last
statement and the END delimiter. PASCAL always treats the compound

statement as a simple statement. Examples of compound statements
appear throughout this chapter.

Assignment Statement
5.2 THE ASSIGNMENT STATEMENT
The assignment statement assigns a value to a variable.
Format
variable-name := expression;

variable-name

Specifies the name of an array element, a file buffer variable, a
function, a field of a record, a variable of any type except a
file.

expression
—frrESs-on

Specifies a value, variable name, function reference, Boolean
expression, set expression, or arithmetic expression.

Note that the assignment operator is := in PASCAL. Do not confuse
this operator with the equal sign (=) operator.

PASCAL STATEMENTS

The expression on the right of the operator establishes the value to
be assigned to the variable on the left of the operator.

You can use the assignment statement to assign a value to a function
identifier or to a variable of any type except a file. The variable
and the expression must be of compatible types, with the following two
exceptions:

® You can assign an integer expression to a real variable.

® You can assign an integer or single-precision real expression
to a double-precision variable.

For structured types, VAX-11 PASCAL enforces Structural compatibility
(see Section 2.4.4) in assignments. See also the description of the
array, record, and set types in Chapter 4.
Examples
1. X :=1;
The variable X is assigned the value 1.
2. Temp := Celsius(Fahrenheit);
The value returned by the function Celsius is assigned to Temp.
3. T := A<B;
The value of the Boolean expression A<KB is assigned to T.
4, Vowel Set := ['A', 'E', ‘', 'o', 'u'];
The set Vowel Set is assigned the set constant shown. The base
type of Vowel Set must include the characters 'A', 'E!, '’', ‘o',
and 'u'. -
S. My Array(l] := My Array(7] + Your_Array[l4j;

The first element of My _Array is assigned the sum of the seventh
element of My _Array and the fourteenth element of Your_ Array.

6. My Array := Your Array;

The value of each element of the array Your_Array is assigned to
the corresponding element of the array My Array.

‘7. Awardrec := New Winner;

Assume that Awardrec and New_Winner are record variables of

assignment-compatible types. This example assigns the value of
each field of New Winner to the corresponding field of Awardrec.

8. Ages := Ages-[10+7];
Assume that the base type of the set variable Ages is the integer

subrange 0..255, This example assigns the value of the set
expression Ages-[10+7] to the variable Ages.

5-3

PASCAL STATEMENTS

Conditional Statements

5.3 CONDITIONAL STATEMENTS
A conditional statement selects a statement for execution depending on
the wvalue of an expression. PASCAL provides three conditional
statements:

e CASE statement

e IF-THEN statement

e IF-THEN-ELSE statement

CASE
5.3.1 The CASE Statement

The CASE statement causes one of several statements to be executed,
depending on the value of a scalar expression.

Format

CASE case-selector OF
case-label-list : statement
[;case-label-list : statement...]
[[OTHERWISE statement]

END;

case-selector

Specifies an expression that evaluates to any scalar type except
a real type.

case-label-list

Specifies one or more constants of the same type as the case
selector, separated by commas. ‘

Each case label list is associated with a statement that may possibly

be executed. The 1list contains the wvalue of the case selector
expression for which the system should execute the associated
statement. You can specify the case labels in any order. However,

the difference in ordinal values between the largest and smallest
labels must not exceed 1000. Each case label can appear only once
within a CASE statement, but can appear in other CASE statements.

At run time, the system evaluates the case selector and chooses which
statement to execute. If the value of the case selector expression
does not appear in any case label 1list, the system executes the
statement in the OTHERWISE clause.

If the value of the case selector expression does not match one of the
case labels and you omit the OTHERWISE clause, the status of the CHECK
run-time option determines the action that the system takes. If CHECK
is enabled, the system prints an error message and terminates
execution. If CHECK is not enabled, execution continues with the
statement following the CASE statement. Refer to the VAX-11 PASCAL
User's Guide for more information on the CHECK option.

5-4

PASCAL STATEMENTS

Examples
1. CASE Age OF
5,6 : IF Birth Month > Sep THEN Grade := 1 ELSE Grade := 0;
7 : BEGIN
Grade := 2;
Reading_Skill := TRUE
END;
8 : Grade := 3

END;

At run time, the system evaluates AGE and executes one of the
statements. If Age is not equal to 5, 6, 7, or 8, and the Check
option is enabled, an error occurs and execution is terminated.

2. CASE Age OF
5,6 : IF Birth Month > Sep THEN Grade := 1 ELSE Grade := 0;
7 : BEGIN
Grade := 2;
Reading Skill := TRUE

END;
8 : Grade := 3
OTHERWISE Grade := 0

END; . B

An OTHERWISE clause is added in this example. If the wvalue of
Age is not 5, 6, 7, or 8, the value 0 is assigned to the variable
Grade.

3. CASE Alphabetic OF
'A','E','I','0','U" : ALPHA FLAG :
'Y' : Alpha Flag :
OTHERWISE Alpha Flag := Consonant

won

Vowel;
Sometimes

END;

This example assigns a value to Alpha Flag depending on the value
of the character variable Alphabetic.

IF-THEN

5.3.2 The IF-THEN Statement
The IF-THEN statement causes the conditional execution of a statement.
Format

IF expression THEN statement;
expression

Specifies a Boolean expression.
The statement is executed only if the value of the expression is TRUE.

If the value of the expression is FALSE, program control passes to the
statement following the IF-THEN statement.

PASCAL STATEMENTS

The THEN clause can specify a structured statement. Note, however,
that if you use the compound Statement, you must not place a semicolon
between the words THEN and BEGIN. For example:

IF Day = Thurs THEN; (* misplaced semicolon *)
BEGIN
statement
END;

As a result of the misplaced semicolon, the empty statement becomes
the object of the THEN clause. In this example, the compound
statement following the IF-THEN statement will be executed regardless
of the value of DAY.

Examples

1. IF ((X * 37/Constant) + Factor) > 1000.0 THEN
ANSWER := ANSWER - FACTOR;

If the value of the arithmetic expression is greater than 1000.0,
a new valué is assigned to the variable Answer.

2. IF (A>B) AND (B>C) THEN
D := A-C;

If both relational expressions are true, D is assigned the value
of A-C. Note that PASCAL does not always evaluate all the terms
of a Boolean expression if it can evaluate the entire expression
based on the value of one term. Thus, if A is less than or equal
to B, the expression B>C may not be evaluated.

3. IF (Name = 'Smith') AND (Initial = 'J') THEN
BEGIN
Count := Count + 1;
Smithadd([Count] := Address;
WRITELN ('J Smith no. ',Count, ' Lives At ', Address)
END;

This example counts the number of J SMITHs, prints each street
address, and stores it in an array.

4. IF Day = Thurs THEN
FOR I :=1 TO Max_Emp DO
Pay[I] := Salary[I] * (1-Tax_Rate-Fica);

If the current value of the variable Day is Thurs, the FOR loop
is executed and values for Pay[I] are computed. If the value of
Day is not Thurs, the FOR loop is not executed. Program control
passes to the statement following the end of the loop.

IF-THEN-ELSE

5.3.3 The IF-THEN-ELSE Statement

The IF-THEN-ELSE statement is an extension of the IF-THEN statement
that includes an alternative statement, the ELSE clause. The ELSE
clause is executed if the test condition is false.

PASCAL STATEMENTS

Format
IF expression THEN statementl ELSE statement?2;
expression
Specifies a Boolean expression.
statementl
Denotes the statement to be executed if the expression is true.
Statement2
Denotes the statement to be executed if the expression is false.
The objects of the THEN and ELSE clauses can be any simple or
structured statement, including another IF-THEN or IF-THEN-ELSE
statement. The ELSE clause always modifies the closest IF-THEN

statement. For example:

IF A=1 THEN
IF B<>1

By definition, PASCAL interprets this statement as if it 1included
BEGIN and END delimiters, as follows:

IF A=1 THEN

BEGIN

IF B<>1 THEN C:=1
ELSE D:=1
END;

The variable D is assigned the value 1 if both A and B are equal to 1.
An ELSE clause to be executed if A is not equal to 1 would be placed
as follows:

IF A=1 THEN
IF B<>1 THEN C:=1
ELSE D:=1

ELSE C:=0;

%S

Examples
3}
1. IF Disease .
THEN
WRITELN ('This person is sick.")
ELSE '

WRITELN ('This person is healthy.');

This example prints a different line of text depending on the
value of the Boolean variable Disease. Note that Disease is a
Boolean expression, so you need not specify Disease = TRUE.

PASCAL STATEMENTS

2. IF Balance < 0.0 THEN
BEGIN
WRITELN ('Overdrawn by ',abs(BALANCE));
WRITELN ('Loan of ',Loan,' at ',Rate,' % automatically deposited');

Ralance := Balance + Loan;
Bill_Amt := Loan * (1+Rate)
END

ELSE WRITELN ('No loan issued this month ');
WRITELN ('Balance is ',Balance);

If the value of Balance is negative, the compound statement |is
executed. The compound statement prints two lines of
notification, adds a loan to Balance, and computes the amount of
the bill for the loan. A zero or positive Balance results in a
message stating that no loan was issued. The WRITELN procedure
that prints the final balance is independent of the conditional

statement and is always executed.

Repetitive Statements
5.4 REPETITIVE STATEMENTS

Repetitive statements specify loops, that is, the repetitive execution
of one or more statements. PASCAL provides three repetitive

statements:
e FOR statement
e REPEAT statement

e WHILE statement

FOR

5.4.1 The FOR Statement

The FOR statement specifies the repetitive execution of a statement
based on the wvalue of an automatically incremented or decremented

control variable.

Format

FOR control-variable := initial-value TO final-value DO statement;
DOWNTO

control-variable

Specifies the name of a variable of any scalar type except a real
type.

initial-value

Specifies an expression of the same type as the control variable.

final-value

Specifies an expression of the same type as the control variable.

PASCAL STATEMENTS

The control variable, the initial value, and the final value must all
be of the same scalar type, but cannot belong to one of the real
types. The repeated statements cannot change the value of the control
variable.

At run time, completion tests are performed before the statement is

executed. In the TO form, if the value of the control variable is
less than or equal to the final value, the loop is executed and the
control wvariable 1is incremented. When the wvalue of the control

variable is greater than the final value, execution of the loop 1is
complete.

In the DOWNTO form, if the value of the control wvariable is greater
than or equal to the final value, the loop is executed and the control
variable is decremented. When the value of the control variable is
less than the final value, execution of the loop is complete.

Because completion tests are performed before the statement is
executed, some loops are never executed. For example:

FOR Control := N TO N+Q DO
Week[N] := Week[N]+Netpay;

If the value of N+Q is less than the value of N -- that is, 1if ©Q is
negative -- the loop is never executed.

When incrementing and decrementing the control varlable, PASCAL uses

units of the appropriate type. For numeric wvalues, it adds or
subtracts 1 upon each iteration. For wvalues of other types, the
control wvariable takes on each successive value of the type. For
example, a control variable of type 'A'..'Z' is incremented (or

decremented) by one character each time the loop is executed.

If the FOR loop terminates normally (that is, if the loop exits upon
completion and not because of a GOTO statement, procedure call, or
function call), the value of the control variable is 1left undefined.
You cannot assume that it retains a value. Therefore, you must assign
a new value to the control variable if you use it elsewhere in the
program.

Examples

1. FOR N := Lowbound TO Highbound DO
Sum := Sum + Int_Array[N];

This FOR loop computes the sum of the elements of Int _Array with
index values from Lowbound through Highbound.

2. FOR Year := 1899 DOWNTO 1801 DO
IF (Year MOD 4) = 0 THEN
WRITELN (Year:4,' IS A LEAP Year');

The DOWNTO form is used here to print a 1list of all the leap
years in thefnlneteenth century.

3. FOR I := 1 TO 10 DO
FOR J := 1 TO 10 DO
A[I,J] := 0;

This example shows how you can directly nest FOR loops. For each

value of I, the system steps through all 10 values of J and
assigns the value 0 to the appropriate array element.

5-9

REP

5.4.2

The R
a spe

Forma

expre

PASCAL STATEMENTS

FOR Employee := 1 TO N DO
BEGIN
Hrs := 40;

FOR Day := Mon TO Fri DO
IF Sick[Employee,Day] THEN
Hrs := Hrs-8;
Pay[Employee] := Wage[Employee] * Hrs
END; :

You can combine structured statements as in this example. The
inner FOR statement computes the number of hours each employee
worked from Monday through Friday. The outer FOR statement

resets hours to 40 for each employee and computes each person's
pay as the product of wage and hours worked.

EAT

The REPEAT Statement

EPEAT statement groups one or more statements for execution until
cified condition is true.

t
REPEAT statement[;statement ...]] UNTIL expression;
ssion

Specifies a Boolean expression.

Note that the format of the REPEAT statement eliminates the need for a
compound statement.
The expression is evaluated after the statements are executed.
Therefore, the REPEAT group is always executed at least once.
Examples
REPEAT
READ(X) ;
IF (X IN ['0'..'9']) THEN
BEGIN

Digit_Count := Digit Count + 1;
Digit_Sum := Digit Sum + ORD(X) - ORD('0"')
END
ELSE Char_Count := Char Count+l
UNTIL EOLN (INPUT);

Assume that the variable X is of type CHAR and the variables
Digit Count, Digit Sum, and Char Count are integers. The example
reads a character (X) from the terminal. If X is a digit, the
count of digits is incremented by 1 and the sum of digits is
increased by the value of X. The ORD() function, described in
Section 2.4.1.3, is used to compute the value of X. If X is not
a digit, the variable Char Count 1is incremented by one. The
example continues processing characters from the terminal until
it reaches an end-of-line condition.

PASCAL STATEMENTS

WHILE

5.4.3 The WHILE Statement

The WHILE statementAcauses one or more statements to be executed while
a specified condition is true.

Format

WHILE expression DO statement;
expression

Specifies a Boolean expression.

The WHILE statement causes the statement following the word DO to be
executed while the expression is true. Unlike the REPEAT statement,
the WHILE statement controls the execution of only one statement.
Hence, to repetitively execute a group of statements, you must use a
compound statement, Otherwise, PASCAL repeats only the single
statement immediately following the word DO.

The expression is evaluated before the statement is executed. If the
expression 1is initially false, the statement is never executed. The
repeated statement must change the value of the expression. If the
value of the expression never changes, the result is an infinite loop.

Examples

1. WHILE NOT EOF (Filel) DO
READLN (Filel);

This statement skips to the end of the text file FILE1l.

2. WHILE NOT EOLN (INPUT) DO
BEGIN
READ (X) ;
IF NOT (X IN ['A'..'Z','a'..'z','O'..'9']) THEN
Err := Err + 1
END;

This example reads an input character from the current 1line on
the terminal. If the character is not a digit or letter, the
error count (ERR) is incremented by 1.

3. Sum := 0
Ntests := 1;

~

Avg := 100;
WHILE (Avg >= 90) AND (Ntests <= Maxtests) DO
BEGIN
Sum Sum + Test [NTests];

Avg := Sum Div Ntests;
Ntests := Ntests +1
END;
IF Avg < 90 THEN
WRITELN ('Your average dropped below 90 as of test ', Ntests:5);

After initializing Sum to zero, this Program fragment repeatedly
calculates a student's average test score. When the average
score falls below 90, the calculations cease and the system
prints an informational mecsage.,

5-11

PASCAL STATEMENTS

WITH

5.5 THE WITH STATEMENT

The WITH statement provides abbreviated notation for references to
fields of a record.

Format
WITH record-variable[,record-variable...]] DO statement;

record-variable

Specifies the name of the record variable to which the statement
refers.

The WITH statement allows you to refer to the fields of a record
directly instead of using the record.fieldname format. 1In effect, the
WITH statement opens the scope of the field identifiers so that vyou
can use them as you would use variable identifiers.

Specifying more than one record variable has the same effect as
nesting WITH statements. Thus, the following two statements are
equivalent:

WITH Cat, Dog DO
Bills := Bills + Catvet + Dogvet;

and

WITH Cat DO
WITH Dog DO
Bills := Bills + Catvet + Dogvet;

Note that if the record Dog is nested within the record Cat, you must
specify Cat before Dog. The names must appear in the order of their
declaration.

Examples

1. VAR Taxes : RECORD
Gross : REAL;
Net : REAL;
Bracket : REAL;
Itemized : BOOLEAN;
Paid : REAL
END;

WITH Taxes DO
IF Net < 10000.0 THEN Itemized := TRUE;

This statement tests the value of the field Taxes.Net, and sets
Itemized to TRUE if Net is less than 10000.0.

PASCAL STATEMENTS

PACKED ARRAY [1..20] OF CHAR;

RECORD

Month : (Jan, Feb, Mar, Apr, May, Jun,
Jul, Aug, Sep, Oct, Nov, Dec);

Day : 1..31;

Year : INTEGER

END;

2. TYPE Name
Date

VAR Hosp : RECORD
Patient : Name;
Birthdate : Date;
Age : INTEGER
END;

WITH Hosp, Birthdate DO

BEGIN
Patient := 'Thomas Jefferson '
Month := Apr;
Age := 236

END;

The program segment in this example shows how you <can wuse the
WITH statement to assign values to the fields of a record. The
WITH statement specifies the names of the record variables Hosp
and Birthdate. The record names must be in order, that is, Hosp

must precede Birthdate. The assignment statements need only
specify the field names; for example, Patient instead of
Hosp.patient and Month instead of Hosp.Birthdate.Month, and so
forth.

GOTO

5.6 THE GOTO STATEMENT

The GOTO statement directs the program to exit from a 1loop or other
program segment before its normal termination point.

Format
GOTO label;

label

Specifies a statement label.

Upon execution of the GOTO statement, program control shifts to the
statement with the specified label. The statement can be any PASCAL
statement or an empty statement.

The GOTO statement must be within the scope of the label declaration.
In addition, vyou cannot wuse a GOTO statement that is outside a
structured statement to jump to a label that is within that structured
statement.

w
|

13

PASCAL STATEMENTS

Examples
FOR I :=1 TO 10 DO
BEGIN
IF Real Array[i] = 0.0 THEN
BEGIN
Result := 0.0;
GOTO 10
END;
Result := Result + l.O/Real_Array[i]
END;

10: Invertsum:= Result;

.
.

This example shows how you can use the GOTO statement to exit
from a loop. The 1loop computes the sum (Invertsum) of the
inverses of the elements of Real Array If one of the elements is
0, however, the sum is set to 0 and the GOTO statement forces an
exit from the loop.

Procedure Call

5.7 THE PROCEDURE CALL

A procedure call specifies the actual parameters to a procedure and
executes the procedure. (See Chapter 6 for a complete description of
procedures.)

Format

procedure-nameﬂ(actual-parameterﬂ,actual-parameter...ﬂ)il

procedure-name

Specifies the name of a procedure.

actual-parameter

Specifies a constant, an expression, the name of a procedure or
function, or a variable of any type.

The procedure call associates the actual parameters in the 1list with
the formal parameters in the procedure declaration. It then transfers
control to the procedure.

The formal parameter list in the procedure declaration determines the
possible contents of the actual parameter list. The actual parameters
must be compatible with the formal parameters. Depending on the types
of the formal parameters, the actual parameters can be constants,
variables, expressions, procedure names, or function names. An
unsubscripted array name in a parameter list refers to the entire
array. PASCAL passes actual parameters by the mechanism specified in
the procedure declaration. See Section 6.3 and the VAX-11 PASCAL
User's Guide for more information on parameters.

5-14

PASCAL STATEMENTS

Examples

1.

Tollbooth (Change, 0.25, Lane[l]);

This statement calls the procedure Tollbooth, specifying the
variable Change, the real constant 0.25, and the first element of
the array Lane.

Taxes (Rate*Income, 'Pay');

This statement calls the procedure Taxes, with the expression
Rate*Income and the string constant 'Pay' as actual parameters.

HALT;

This statement calls the predeclared procedure HALT, which has no
parameters.

CHAPTER 6

PROCEDURES AND FUNCTIONS

Procedures and functions are program units that perform tasks for
other program units. A procedure associates a set of statements with
an identifier; the statements are executed as a group. A function
names a group of statements that returns a value. Each function is
associated with a type and an identifier.

Procedures and functions have similar structures and restrictions.
This chapter uses the term "subprogram" in descriptions that apply to
both procedures and functions.

VAX-11 PASCAL allows you to use several kinds of subprograms:
e Predeclared subprograms, described in Section 6.1.

e User-declared subprograms written in PASCAL. Sections 6.2 and

© 6.3 present the general format of subprograms and describe how

parameters are passed to subprograms. Sections 6.4 through
6.6 describe how to declare PASCAL procedures and functions.

e External subprograms. This category includes subprograms
written in other VAX-11 1languages, VAX/VMS system service
routines, and VAX-11 Run-Time Library procedures. Section 6.7
describes external subprograms; see the VAX-11 PASCAL User's
Guide for additional information.

You can include subprograms in the main program compilation unit or
you can compile them separately from the main program in modules.
Separately compiled subprograms are considered external to the main
PASCAL program and special usage rules apply (see Section 6.8).

6.1 PREDECLARED SUBPROGRAMS

VAX-11 PASCAL provides predeclared procedures and functions that
perform various commonly used tasks, such as 1input and output
operations and mathematical functions. These predeclared subprograms
are described in the following sections.

6.1.1 Predeclared Procedures

VAX-11 PASCAL declares procedures to perform input and output,
allocate and destroy! dynamic variables, supply the system date and
time, pack and unpack array variables, and halt program execution.
Table 6-1 summarizes these procedures.

PROCEDURES AND FUNCTIONS

Table 6-1
Predeclared Procedures

Procedure

Parameter Type

Action

CLOSE(f) 1

DATE (string)
DISPOSE (p)

DISPOSE (p, tl,...,tn)

FIND(f,n) 1
GET(f) 1

HALT

LINELIMIT(f,n)!

NEW (p)

f = file variable

string = variable of
type PACKED ARRAY
[1..11] OF CHAR

p = pointer variable

p = pointer variable
tl,...,tn = tag field
constants

Hh

= file variable
positive integer
expression

3
1]

f = file variable

None

f = text file variable
n = integer expression
p = pointer variable

Closes file f.

Assigns current date to
string.

Deallocates storage for
pP". The pointer variable
p becomes undefined.

Releases storage occupied
by p~; used when p~ is a
record with variants.

Tag field values are
optional; if specified
they must be identical to
those specified when
storage was allocated by
NEW.

Moves the current file
position to component n
of file f.

Moves the current file
position to the next
component of f. Then
GET(f) assigns the value
of that component to f~,
the file buffer variable.

Calls LIBS$STOP, which
signals SS$ ABORT.
Without an appropriate
condition handler, HALT
terminates execution of
the program.

Terminates execution of
the program when output
to file f exceeds n
lines. The value for n
is reset to its default
after each call to
REWRITE for file f.

Allocates storage for p°
and assigns its address
to p.

1. Refer to Chapter 7 for descriptions of these input and output procedures.

(continued on next page)

PROCEDURES AND FUNCTIONS

Table 6-1 (Cont.)
Predeclared Procedures

Procedure

Parameter Type

Action

NEW(p, tl,...,tn)

OPEN(f,attributes)1

PACK (a,i,2)

PAGE (f) 1

PUT(f) 1

READ(f, v1,...,vn) 1

P = pointer variable
tl,...,tn = tag field
constants

f = file variable
attributes -- see
Section 7.5

a = variable of type
ARRAY [m..n] OF T

i = starting subscript
of array a

z = variable of type
PACKED ARRAY ([u..v]
OF T

f = text file variable

f = file variable

f = file variable
vl,...,vn = variables

Allocates storage for p~;
used when p~ is a record
with variants. The
optional parameters tl
through tn specify the
values for the tag fields
of the current variant.
All tag field values must
be listed in the order in
which they were declared.
They cannot be changed
during execution. NEW
does not initialize the
tag fields.

Opens the file f with the
specified attributes.

Moves (v-u+l) elements
from array a to array z
by assigning elements
a[i] through a[i+v-u])

to z[u] through z[v].

I'''e upper bound of a must
be greater than or equal
to (i+v-u).

Skips to the next page of
file f. The next line
written to f begins on
the second line of a new

page.

Writes the value of £,
the file buffer variable,
into the file f and moves
the current file position
to the next component of
f.

For vl through vn, READ
assigns the next value in
the input file f to the
variable. You must
specify at least one
variable (vl). The
default for f is INPUT.

1. Refer to Chapter 7 for descriptions of these input and output procedures.

(continued on next page)

PROCEDURES ANi

FUNCTIONS

Table 6-1 " >nt.)
Predeclared P:..-edures

Procedure

Parameter Type

Action

READLN(f, v1,...,vn) 1

RESET (f) 1

REWRITE (f) 1

UNPACK(z,a,i)

TIME (string)

WRITE (f,pl,...,pn) 1

WRITELN (f,pl,...,pn) 1

f = text file variabl
vl,...,vn = variables

f = file variable

f = file variable

z = variable of type
PACKED ARRAY[u..v]
OF T

a = variable of type
ARRAY [m..n] OF T

i = starting subscript
in array a

string = variable of
type PACKED ARRAY
[1..11] OF CHAR

f = file variable
pl,...,pn = write
parameters

f = text file variable
pl,...,pn = write
parameters

Performs the READ
procedure for vl through
vn, then sets the current
file position to the
beginning of the next
line. The variable list
is optional. The default
for £ is INPUT.

Enables reading from file
f. RESET(f) moves the
current file position to
the beginning of the file
f and assigns the first
component of f to the
‘ile buffer variable, f~.
LIOF(f) is set to FALSE
uiless the file is empty.

Encbles writing to file
f. REWRITE(f) truncates
tle file f to zero length
ani sets EOF(f) to TRUE.

Mov2s (v-u+l) elements
frot array z to array a
by assigning elements
z[u] through z[v] to ali]
throujyh a(i+v-u]. The
upper lLound of a must be
greater than or equal to
(i+v-u, .

Assigns the current time
to string.

Writes the values of pl
through pn into the file
f. At least one
parameter (pl) must be
specified. The default
for £ is OUTPUT.

Performs the WRITE
procedure, then skips to
the beginning of the next
line. The write
parameters are optional.
The default for f is
OUTPUT.

1.

Refer to Chapter 7 for descriptions of these input and output procedures.

PROCEDURES AND FUNCTIONS

6.1.1.1 Dynamic Allocation Procedures - PASCAL provides the
procedures NEW and DISPOSE for use with variables that are dynamically
allocated.

NEW

The predeclared procedure NEW allocates memory for a dynamic variable.
To refer to the dynamic variable, you must use a pointer variable (see
Section 4.8 for a description of pointer types).

Format

NEW (p) ;

lge]

Specifies a pointer variable.
The NEW procedure sets aside memory for p~, that is, the variable that
p refers to. The value of p”~ is undefined. You cannot assume that
the allocated space is initialized.
For example, you declare a pointer variable as follows:

VAR Ptr : "INTEGER:

This declares Ptr as a pointer to an integer wvariable. . The integer
variable and its address, however, do not yet exist. You use the
following procedure call to allocate memory for the dynamic variable:

NEW (Ptr) ;
This call allocates a variable of type INTEGER. The variable is
denoted by Ptr”, that is, the pointer variable's name followed by a

circumflex(”). This call also assigns the address of the allocated
integer to Ptr.

DISPOSE

The predeclared procedure DISPOSE deallocates memory for a dynamic
variable. As for NEW, you must use a pointer variable to refer to the
dynamic variable.

Format

DISPOSE (p) ;

Iro

Specifies a pointer variable.

For example, to deallocate memory for the dynamic wvariable 1in the
above example, you can issue the following procedure call:

DISPOSE (Ptr) ;
As a result of this procedure call, the memory allocated for Ptr" s

deallocated and the wvariable is destroyed. The value of Ptr is now
undefined.

PROCEDURES AND FUNCTIONS

Pointer types and dynamic allocation allow you to create 1linked data
structures. An example of the use of pointer types and the NEW and
DISPOSE procedures follows.

Examples
PROGRAM LinkedList (INPUT, OUTPUT) ;

(* This program constructs a linked 1list of records. Each
student record contains data on one student, that is, a name and
a student ID number. Each record also contains a field that is a
pointer to the next record. The program reads a number and a
name and assigns each of them to a field of the student record.
Then it inserts the new record on the beginning of the linked
list by assigning the "Start" pointer to that new record.*)

TYPE Student Ptr = ”Student_Data;
String = PACKED ARRAY[1..20] OF CHAR;
Number = 1..99999;

Student Data = RECORD
- Name : String;
Stud Id : Number
Next : Student Ptr
END; -

VAR Start, Student : Student Ptr;
New Id : Number;
New Name : String;
Count : INTEGER;

PROCEDURE Write_Data(Student : Student_Ptr);

(*This procedure prints the 1list of students. Because the
printing starts at the beginning of the linked list, the student
names and ID numbers are printed in the reverse of the order in
which they were entered.*)

VAR I,J : INTEGER;
Next Student : Student Ptr;
BEGIN -
WRITELN ('Name:', 'Student ID#:':29);
REPEAT
WRITELN (Student”.Name : 20, Student”.Stud Id : 7);
Next Student := Student”.Next; -
DISPOSE (Student) ;
Student := Next Student
UNTIL Student = NIL
END; (*End of Write Data¥*)

6-6

PROCEDURES AND FUNCTIONS

(* Main Program *)

BEGIN
Count := 0;
WRITELN ('Type a 5-digit ID number and a name for each student.’
WRITELN('Press CTRL/Z when finished.');
Start := NIL;
WHILE NOT EOF DO
BEGIN
READLN (New_Id, New Name) ;
NEW (Student);
Student” .Next := Start;
Student”.Name := New Name;
Student”.Stud 14 := New Id;
Start := Student; -
Count := Count + 1
END;
IF Count > 0 THEN
Write Data(Start)

END.

In the main program, the WHILE loop reads a number and a name for
one student. The following procedure call allocates memory for a
new student record:

NEW(Student) ;

The new record is inserted at the beginning of the list, that is,
Student”.Next points to the previous head of the list. The value
of the new student record is assigned to the Start pointer.

The Write Data procedure writes the name and student ID number
for each student in the linked list. After writing data for one
student, the procedure assigns the address of the next record in
the 1list to Next Student. The following call deallocates memory
for one student record:

DISPOSE (Student) ;

After deallocating memory, the procedure assigns the wvalue of
Next_Student to Student. When the current Student record points
to NIL, the loop stops executing.

NEW and DISPOSE -- Record-With-Variants Form

You can use the following forms of NEW and DISPOSE when manipulating
dynamic variables of a record type with variants:

NEW(p,tl1,...,tn)
DISPOSE (p,tl,...,tn)

The parameter p must be a pointer variable pointing to a record with
variants. The optional parameters ¢t1 through tn must be scalar
constants. They represent nested tag field values where tl1 is the
outermost variant.

If you create p without specifying the taj field values, the system
allocates enough memory to hold any of the variants in the record.
Sometimes, however, a dynamic variabl- ‘i1l take wvalues of only a
particular variant. If that variant *2quires less memory than NEW (p)
would allocate, you can use the NEW(p,t1,...,tn) form.

)i

PROCEDURES AND FUNCTIONS

For example, the following record represents a menu selection:

TYPE Menu Ptr = "Menu Order;
Meat Type = (Fish, Fowl, Beef);
Beef Portion = (0z 10, 0z 16, Oz 32);
Menu Order = RECORD - -
"~ CASE Entree : Meat Type OF
Fish : (Fish Type : (Salmon, Cod, Perch, Trout);
Lemon : BOOLEAN);
Fowl : (Fowl Type : {(Chicken, Duck, Goose);
Sauce : (Orange, Cherry, Raisin));
Beef : (Beef Type : (Steak, Roast, Prime rib);
CASE Size : Beef Portion OF -

0z 10, 0z _16 : (Beef veg : (Pea, Mixed));
0z_32 : (Stomach Cure : (Bicarbonate,
Antacid,

None Needed)))
END;

VAR Menu_Selection : Menu Ptr;

You can allocate memory for only the Fish variant as follows:
NEW(Menu Selection, Fish);

The example below shows how to call NEW and specify tag field wvalues
for nested variants:

-

NEW(Menu Selection, Beef, 0z 32);

The tag field values must be listed in the order in which they were
declared.

The DISPOSE(p,tl,...,tn) procedure call releases memory occupied by p.
The tag field wvalues tl1 through tn must be 1identical to those
specified when memory was allocated with NEW. For example:

DISPOSE (Menu Selection, Beef, 0z 32);

This call deallocates the memory allocated by the last NEW procedure
call shown above.

6.1.1.2 Miscellaneous Predeclared Procedures - PASCAL provides the
predeclared procedures PACK and UNPACK for packing and unpacking
arrays. Packing means that the data items are stored as densely as
possible.

PACK

You can declare arrays to be packed by specifying PACKED in the TYPE
or VAR declaration (see Section 4.9). Sometimes, however, you might
want to convert an array to a packed array within the executable
section of<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>